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Flow transitions resembling bifurcations of the

logistic map in simulations of the baroclinic

rotating annulus
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Atmospheric, Oceanic and Planetary Physics, Department of Physics, University

of Oxford, UK

Abstract

We present evidence for a sequence of bifurcations in simulations of the differen-

tially heated baroclinic rotating annulus, similar to bifurcations associated with the

logistic map. The Met. Office / Oxford Rotating Annulus Laboratory Simulation

(MORALS) code is used to construct a detailed numerical regime diagram for the

annulus, and the distribution of regimes in parameter space is discussed. The bifur-

cations are observed in a sequence of runs at high temperature forcing, identified by

Poincaré sections of the dominant temperature mode amplitude time series. Higher

order return maps and predictions using quadratic fits to the data are used to ver-

ify this result, and Lyapunov exponents are calculated to identify and quantify the

chaotic parts of the sequence.
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1 Introduction

The differentially heated rotating annulus [1–3] is a laboratory experiment

that has been used for over 50 years to produce behaviour qualitatively sim-

ilar to the midlatitudes of a generic planetary atmosphere. The experiment

consists of two concentric cylinders maintained at different temperatures, ro-

tating about a vertical axis, with fluid between them (Fig. 1). This setup is

firmly established as an insightful laboratory analogue for certain kinds of at-

mospheric dynamical behaviour, and is also a useful testbed for the methods

used to study them.

Fig. 1. Schematic of the rotating annulus setup (to scale), with inner and outer cylin-

ders at temperatures Ta and Tb respectively, rotating at constant angular velocity

Ω. Fluid is contained between the cylinders.
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Baroclinic instability, which is one of the primary mechanisms governing large

scale fluid motion in the atmosphere, can be reproduced in the annulus under

certain conditions when a temperature gradient is combined with rotation [1],

and the laboratory setting allows this to be studied in a controlled and repro-

ducible environment. As well as similarities with the atmosphere, the annulus

displays a rich and diverse range of behaviour worthy of study in its own right,

including low–dimensional dynamics. Although using the annulus as a direct

analogue of the highly turbulent Earth’s atmosphere may be questionable, the

complex nature of real atmospheres means we need simpler analogues for test-

ing ideas and methods. Weakly turbulent behaviour observed in the annulus

is more relevant for simpler planetary atmospheres such as on Mars, where

the large–scale flow is believed to be more predictable than large-scale flow on

Earth [4].

This work is exclusively a computational study. Initially, we summarize the

construction of a detailed numerical regime diagram for the rotating annulus;

this is directly comparable with equivalent diagrams produced from earlier

laboratory experiments. We then report the discovery of a previously unseen

regime, whose behaviour is similar to the bifurcations produced by iteration

of the logistic map [5–7]. In the laboratory, this type of behaviour is well doc-

umented in Rayleigh–Bénard convection cells using water and mercury: these

experiments found period–doubling bifurcations in velocity and temperature

time series as a result of varying external forcing, either by a temperature gra-

dient (water) [8, 9] or magnetic forcing (mercury) [10, 11]. Period–doubling of

a periodic amplitude modulation has also been seen as a result of baroclinic

instability in a two layer, open cylinder experiment driven by differential ro-

tation [12]. It has not been observed to date in the laboratory annulus under

3
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radial thermal forcing, however.

Section 2 describes the simulation. In Section 3 the regime diagram and its

main features are outlined. We present evidence for a sequence of bifurcations

similar to the logistic map in Section 4, and supplementary evidence using

Lyapunov exponents in Section 5. Section 6 provides discussion and conclu-

sions.

2 The simulation

We use the Met. Office / Oxford Rotating Annulus Laboratory Simulation

(MORALS) code [13–15]. This solves the full Navier–Stokes, continuity, and

heat transfer equations along with equations of state for density, viscosity

and thermal diffusivity (Appendix A), under the Boussinesq approximation

for a cylindrical annulus rotating at angular velocity Ω. The equations are

cast in velocity–temperature–pressure form: u (meridional), v (zonal) and w

(vertical) velocities / cm s−1, temperature T / ◦C and a normalized pressure

Π = P/ρ0 / cm2 s−2. In this work we use the ‘standard’ configuration with

inner and outer walls maintained at constant temperatures Ta and Tb respec-

tively, with no internal heating, and include a rigid lid (i.e., a no–slip upper

boundary condition). The model works on a (R, φ, z) grid of 24 × 64 × 24

nodes stretched in R and z (to resolve the boundary layers). The parameters

defining the annulus and working fluid (Table 1) are identical to the ‘main

comparison’ of Hignett et al. [14], but use a range of Ω and ∆T = Tb − Ta,

instead of just one value.

4
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Table 1

Parameters defining the annulus apparatus and fluid properties.

Annulus inner cylinder radius a = 2.5 cm

Annulus outer cylinder radius b = 8.0 cm

Annulus height d = 14.0 cm

Working fluid (by volume) 83% water / 17% glycerol

Mean density ρ0 = 1.044 g cm−3

Volume expansion coefficient α = 2.86 × 10−4 / K−1

Prandtl number Pr = 13.1

Rotation rates 0.19 ≤ Ω/ rads−1 ≤ 3.50

Inner wall temperatures 12.5 ≤ Ta/
◦C ≤ 19.995

Outer wall temperatures 20.005 ≤ Tb/
◦C ≤ 27.5

Temperature differences 0.01 ≤ ∆T/ K ≤ 15

Initial temperature T0 = 20◦C

(midway from Ta to Tb)

5
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3 Numerical regime diagram

Eighty–two simulations were run to construct a numerical regime diagram.

Each run was placed in the regime diagram using the thermal Rossby and

Taylor numbers:

Θ ≡
gα∆Td

Ω2 (b − a)2 T ≡
4Ω2 (b − a)5

ν2d
,

where g is the gravitational acceleration and ν is the kinematic viscosity.

These parameters have been used for some decades as the standard quantities

for comparing annulus flow regimes, and so will allow comparison between

our results and earlier work. Both Θ and T are dimensionless parameters

representing the balance of forces in the annulus. The thermal Rossby number

Θ is the ratio between buoyancy/inertial forces and Coriolis forces; at large

Θ rotation may be ignored, and at low Θ the geostrophic approximation is

justified. The Taylor number T is the ratio between inertial forces due to

rotation, and viscous forces; it measures the ability of a fluid to resist shear

stresses. Using the values in Table 1,

Θ = 0.130
∆T

Ω2
T = 5.22 × 106 Ω2.

The simulations were initialized by first running a reduced model, which in-

tegrates the axisymmetric form of the equations of motion over a vertical 2D

slice (with the same parameters as the subsequent 3D run). This was run until

a steady state was reached (around t = 10, 000s). The slice was then copied

to each azimuthal coordinate, and a sinusoidal perturbation was introduced

6
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to the temperature field, defined by

δT (R, φ, z) =































X sin
(

R−a
b−a

π
)

sin
(

z
d
π
)

φ = 0

0 otherwise,

where X = 0.1 K. Note that this perturbation is applied only at φ = 0,

so it is essentially a white noise perturbation independent of any particular

azimuthal behaviour. Each simulation starts from a different axisymmetric

state (defined by the 2D run), but is initialized using the same perturbation.

The perturbation is necessary to move the system away from an (unstable)

axisymmetric state, as it would otherwise remain axisymmetric (N.B.: the

effects of using finite precision arithmetic would eventually grow to appreciable

levels, causing the symmetry to be broken, but this would take a long time).

Each simulation was run at constant ∆T and Ω until transient motion had

decayed and a flow regime was identified. This process took between 1500

and 13500 seconds of simulated time, depending on the parameters. Spatial

Fourier transforms of the temperature and pressure fields around an azimuthal

circle at mid height and mid radius were saved every 1–2s. Complete veloc-

ity, temperature, and pressure fields were saved every 100–300s. Each run was

classified using a number of methods, illustrated in Fig. 2. A wavenumber

spectrum (Fig. 2a) containing the instantaneous amplitudes of each tempera-

ture mode allows the dominant wavenumber M to be identified. The dominant

wavenumber M of the fluid at time t is the azimuthal mode (in any quantity

one chooses) with the largest amplitude at time t, ignoring wavenumber zero.

It can also be identified by eye from the rotational symmetry of the fluid: for

azimuthal wavenumber M the variation in any given quantity repeats after

7
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Fig. 2. Characteristics of wavenumber-3 amplitude vacillation for a 9000 s run with

Ω = 0.80 rad s−1, ∆T = 5 K, T = 3.34 × 106, and Θ = 1.014.

(a) Wavenumber spectrum, averaged

over the final 1000s.

(b) M = 3 temperature amplitude time

series.

(c) TM=3(t) Fourier spectrum.

(d) TM=3(t) derivative coordinate recon-

struction.

2π/M radians (in the simpler regimes, at least). The wavenumber–M tem-

perature amplitude time series TM (t) (Fig. 2b) shows the evolution of wave

behaviour. A time series spectrum (Fig. 2c) defined by the Fourier transform

of TM(t) after transients have decayed is useful, as each regime has a distinct

spectral signature (N.B., as TM(t) is already the amplitude of a spatial Fourier

transform, the drift frequency of the wave around the annulus is missing). Fi-

nally, the derivative coordinate reconstruction of TM(t) (Fig. 2d) also has a

8
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distinct signature; its trajectory in phase space is given by

















dTM(t)/dt

TM(t)

















≈

















(TM,t+∆t − TM,t−∆t)/ (2∆t)

TM,t

















,

where ∆t is the time step size.

Figure 3 shows the full regime diagram and a region of detail. Approximate

regime transitions are indicated by solid lines. As MORALS has been used for

some 30 years it is surprising that a detailed diagram has not been constructed

before now; rapid increases in computing power have now made it possible to

do this. The simulations are still computationally expensive, however, each

run taking 10–15 hours to complete 1 .

3.1 Dynamical regimes

Six distinct regimes were observed: axisymmetric flow (AX), steady wave

flow (S), amplitude vacillation (AV), modulated amplitude vacillation (MAV),

structural vacillation (SV) and a previously unseen regime, period–doubled

amplitude vacillation (AV–d). The boundary between steady wave flow and

vacillating flow was defined using the vacillation index [3], defined as

IV =
max(TM) − min(TM)

max(TM) + min(TM )

To identify runs close to this boundary, two subdivisions of the steady wave

regime have been defined, and the conditions for classifying runs in these

1 The simulations were performed on an Open MOSIX cluster with nine Intel Net-

burst Xeon 2.8 GHz processors and 6GB RAM.

9
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Fig. 3. Numerical regime diagram. In (a), each run is represented in the diagram

by a number corresponding to its dominant wavenumber M , and in (b), by a point.

Runs that do not fall into the regime of their immediate surroundings are indicated

individually.
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regimes are listed in Table 2. S++ effectively defines a flow right on the bound-

ary between steady wave flow and vacillating flow.

Table 2

Classification of regimes based on vacillation index. 〈IV 〉 is the mean value of IV

over a time series (the mean of a set of IV calculated using each pair of adjacent

maxima and minima) and σIV
is its standard deviation.

〈IV 〉 〈IV 〉 + σIV
Classification

0 N/A S

< 0.05 < 0.05 S+

< 0.05 ≥ 0.05 S++

≥ 0.05 any vacillating

The main features of Fig. 3 are similar to comparable regime diagrams ob-

tained from laboratory work in the rotating annulus literature [1–3, 16–18].

Axisymmetric flow is observed at high Θ / low T and at low T (mid T / low

Θ runs were not performed, so the boundary there could not be confirmed).

This is distinguished by M = 0 in the wavenumber spectrum, and the ab-

sence of waves. In steady wave flow, one mode and its harmonics dominate

the wavenumber spectrum; the amplitude of the dominant mode is constant;

the derivative coordinate embedding deviates from a point only due to the

limits of floating point precision, and the time series amplitude spectrum is

smooth, tending to a maximum at low frequency. In amplitude vacillation,

the dominant wave amplitude oscillates quasi-sinusoidally, and the strength

of amplitude modulation is constant in time. One wave mode and its harmon-

11
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ics dominate the wavenumber spectrum; the time series amplitude spectrum

contains strong signals at the vacillation frequency and its harmonics, and

the derivative coordinate embedding is periodic. Alternating steady wave and

vacillating flows are observed with decreasing Ω, with each steady wave regime

developing into AV before the transition to lower wavenumber. The S+ and

S++ regions indicate the steady wave–vacillating transition is gradual. Struc-

tural vacillation was observed at high T / low Θ. Here the time series is

aperiodic and its spectrum displays a noisy tail at high frequency, tending to a

maximum at low frequency; in contrast to S and AV, the dominant mode and

its harmonics in the wavenumber spectrum are only weakly dominant with

respect to the other modes, and the derivative coordinate embedding is un-

structured. The boundary between SV and irregular flows (geostrophic turbu-

lence) is ambiguous and no attempt will be made to distinguish between flows

in the two regimes here. Finally, Hide & Mason [19] define ‘weak’ waves as

flow where the mean value AM = 〈TM,peak−to−peak(t)〉 satisfies AM > 0.04 ∆T ,

and ‘strong’ otherwise; these are waves whose amplitudes are nonzero despite

having a thermal Rossby number above the Eady threshold for baroclinic in-

stability. One run was defined as being ‘weak’ in this context. The amplitude

of the wave in this case was highest at mid-R and mid-z, in contrast with [19]

whose weak waves were confined to the vertical extremes of the domain.

3.2 Differences between simulation and laboratory

A number of differences were also found between Fig. 3 and laboratory results.

Only a few flows exhibited modulated amplitude vacillation – in earlier

laboratory work [3, 18] it was more common, although the fluid was of higher

12
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Prandtl number. We define MAV here as a flow where the dominant wave

amplitude oscillates at one frequency but the oscillation is modulated; the

time series spectrum contains a strong peak at the vacillation frequency and

at least one peak at lower frequency. The attractor traced in the derivative

coordinate embedding has nonzero thickness. Steady regimes were found at low

∆T , and period doubled amplitude vacillation was seen at high ∆T (Section

4). None of the more exotic regimes seen by Früh & Read [18] in fluid of higher

Prandtl number were found.

Early laboratory work [19] found that, when changing Ω at constant ∆T during

a single experiment, in some situations the regime transitions occur at different

rotation rates when increasing Ω, compared with decreasing Ω (the so–called

‘hysteresis’ effect). In our work each run used constant Ω, so it is not yet

possible to determine whether this effect also occurs in numerical simulations

of the annulus.

Hignett [2] used the same annulus dimensions and fluid as these simulations,

so our regime diagram is the equivalent numerical version of that laboratory

study. In addition to the similarities in Section 3.1 above, in both labora-

tory and numerical regime diagrams a similar sequence of behaviour was ob-

served with increasing Ω along lines of constant ∆T , and transitions approx-

imately follow lines of constant Θ. The Hignett regime diagram is confined

to 2 ≤ ∆T/ K ≤ 10, so behaviour at low ∆T cannot be compared. The main

difference between the two approaches is that wavenumber transitions are at

lower Ω in our numerical results. For example, for ∆T = 4 K the 2S/3AV tran-

sition occurs at Ω ≈ 0.82 rad s−1 in the laboratory, and at Ω ≈ 0.71 rad s−1 in

our simulations, a shift of −0.11 rad s−1 from laboratory to model. This has

previously been attributed to the presence of a thermocouple ring in the labo-

13
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ratory setup [14]. Regime transitions are less clear at higher rotation rates, so

it is impossible to say whether this shift is constant over the whole of (T , Θ)

space.

4 A sequence of bifurcations similar to the logistic map

Fig. 4. A regime diagram showing the runs performed to explore logistic map be-

haviour. The total time for each simulation was between 4500 and 13500 s, with

7.0 ≤ ∆T/ K ≤ 11.5 and 0.72 ≤ Ω / rad s−1 ≤ 0.90. See text for further analysis

of points A–D.

The area around ∆T = 10 K, Ω = 0.86 rad s−1 (T = 3.86 × 106, Θ = 1.755)

was explored at a higher resolution as the run at this point displayed behaviour

not seen before. Fig. 4 shows the 37 runs performed in the region around this

point. The main analysis was done along the line of 28 runs at Θ ≈ 1.755, and

henceforth we shall focus only on these runs. Figures 5–8 show the results from

four runs at points A–D along this sequence. Our attention was initially drawn

to this behaviour by a time series similar to Fig. 7a, which is qualitatively

14
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Fig. 5. Analysis of point A (2AV–dh, Ω = 0.8251 rad s−1, ∆T = 9.21 K,

T = 3.55 × 106, Θ = 1.756) in Fig. 4. (a) M = 2 temperature time series; (b)

time series spectrum derived from TM=2(t) after transients have decayed; (c) 2D

projection of the delay coordinate trajectory reconstructed from the TM=2(t) time

series in (a); (d) temperature maxima first return map.

(a) (b)

(c) Delay = 0.95s (d)

different from the amplitude vacillation in Fig. 2b. This difference is reinforced

by comparing the frequency spectra of their amplitude time series: in Fig. 7b

we see subharmonics below the main frequency, but these are not present in

Fig. 2c, where only the harmonics are clear.

Qualitative features of this new behaviour can be visualized using delay coor-

dinate reconstructions [20]. The DE–dimensional delay coordinate reconstruc-

tion with delay τ of a scalar time series (A1, A2, ... , AN−1, AN ) is

15
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Fig. 6. As Fig. 5, but for point B (2AV–dh, Ω = 0.845 rad s−1, ∆T = 9.64 K,

T = 3.726 × 106, Θ = 1.752).

(a) (b)

(c) Delay = 1.00s (d)

(A1, A1+τ , A1+2τ , ... , A1+(DE−1)τ )

(A2, A2+τ , A2+2τ , ... , A2+(DE−1)τ )

......

(AI , AI+τ , AI+2τ , ... , AI+(DE−1)τ ).

This defines a trajectory in phase space of length I = N − τ(DE − 1). A num-

ber of conditions restrict the governing parameters [21]: small sampling time

ts = tA2
− tA1

ensures a smooth approximation to the true trajectory, the de-

lay time τ should be long enough to ensure independence between coordinates,

and the embedding dimension DE must be large enough to ensure a one–to–

one map from time series to delay reconstruction.

In this work the sampling time was set such that 1.0 ≤ ts / s ≤ 2.5 (over-

16
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Fig. 7. As Fig. 5, but for point C (2AV–d3, Ω = 0.8565 rad s−1, ∆T = 9.91 K,

T = 3.83 × 106, Θ = 1.754).

(a) (b)

(c) Delay = 0.85s (d)

sampled, but at no extra computational cost). The embedding dimension was

estimated using the method of false nearest neighbours [22], implemented us-

ing the Nonlinear Time Series Analysis (TISEAN) package [23, 24]; DE = 4

was found to be suitable. The delay time was found by computing the first

minimum of the time delayed mutual information [25], yielding values of

40 – 120 ts (40 – 300 s).

Subfigures (c) in Figs 5–8 show four such reconstructions at points A–D. We

define a new regime ‘period–doubled amplitude vacillation’ (2AV–d) for flows

exhibiting multiple or aperiodic loops in their M = 2 delay coordinate re-

constructions. The regime is further subdivided depending on the number of

17
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Fig. 8. As Fig. 5, but for point D (2AV–d1, Ω = 0.88 rad s−1, ∆T = 10.47 K,

T = 4.04 × 106, Θ = 1.755).

(a) (b)

(c) Delay = 0.60s (d)

loops; we have observed 2AV–d1, 2AV–d2, 2AV–d3 for 1–3 loops respectively,

and aperiodic regimes of higher order which we denote 2AV–dh. 2AV–d1 is

distinguishable from 2AV by the width of the attractor in the delay coordinate

reconstruction: 2AV is the limit of a single line, but this distinction is currently

unquantified. Inspections of attractors A, B, and other 2AV–dh cases reveal a

resemblance to the Rössler attractor [26] – in a 3D reconstruction, the shape

is a mirror image. Schematically, it looks the same as Abraham & Shaw [27,

p.94], except reflected about the vertical axis.

The presence of these different periods indicates some kind of bifurcation se-

quence. To quantify this, for each run the set of temperature amplitude max-

18
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Fig. 9. Time series maxima of the M = 2 temperature mode for the 28 runs in

Fig. 4. The maxima for each run are plotted at the appropriate Taylor number.

ima was identified in the TM=2(t) time series, and these temperatures are

plotted in Fig. 9 against the corresponding Taylor number for each run. The

result is similar to behaviour produced, for example, by bifurcations of the

logistic map [5–7]. At low Taylor numbers the behaviour is periodic and bifur-

cates to 2AV–d2 with increasing Taylor number. Further bifurcations occur

before A (2AV–dh), whose values are spread over the temperature range. Two

periodic windows (2AV–d3) separate A from B (2AV–dh). By C (2AV–d3)

periodic behaviour has returned. Around T ≈ 4 × 106 an event occurs with

results characteristic of a boundary crisis [28]. This causes the temperature

range to tighten by a factor of 2–3, and periodicity is lost by D (2AV–d1).

The 2AV–d3 cases may imply that chaotic dynamics exist at certain intervals

of Taylor number along the sequence [29]. It is also notable that the run to the

left of A is 2AV–d3: this indicates that within the range 3.388 × 106 ≤ T ≤

3.508 × 106 there should be a chaotic window, as the first period–3 window

19

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.



AC
C

EP
TE

D
M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

for bifurcations of the logistic and similar maps occurs immediately after the

first chaotic window.

We now consider whether a map similar to the logistic map exists to define the

sequence of time series maxima in our simulations. In a continuous dynamical

system dX/dt = F (X), the first return map is constructed from a Poincaré

section. For instance, this section can be an (n − 1)–dimensional subspace

Yi = (x1, x2, ..., xn−1) through an n–dimensional space Xi = (x1, x2, ..., xn)

defined where xn is constant: the first return map is then Yi+1 vs Yi. In this

context, we define the section using xn ≡ dTM=2/dt = 0. The first return map

is Tmax,i+1 vs Tmax,i, where Tmax,i is the ith maximum in the dominant

wavenumber temperature time series TM=2(t). Subfigures (d) of Figs 5–8 show

these maps for points A–D. For A and B in particular, a quadratic map

Tmax,i+1 = α + βTmax,i + γT 2
max,i (1)

is a suitable fit, and the best fits are superimposed in all four cases. For

2AV–dh these fits are particularly good, indicating an underlying structure

qualitatively similar to the logistic map.

4.1 A superposition of waves?

It is possible that this behaviour could be the produced by superimposing

waves of incommensurate frequency, manifested in the dominant wavenumber

at mid–height/mid–radius. We now argue that this is not the case, by showing

that the oscillation of interest is present throughout the fluid, and is also

present at other wavenumbers. To show that the oscillations are ubiquitous

in space, the same spatial Fourier analysis was done at other points in the
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Fig. 10. Further analysis of run B at five different points in the vertical slice: (a)

time series of M = 2 temperature mode amplitudes at five different points. (R, z)

positions are (in cm): α (3.81, 11.12); β (6.69, 11.12); γ (5.25, 7.00); δ (3.81, 2.88);

ǫ (6.69, 2.88); (b) positions of the five points in the slice; (c) time series showing

Nusselt number at R = a.

(a) Time series

(b) Positions (to scale) (c) Nusselt number
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Fig. 11. The amplitudes of temperature modes 1 ≤ m ≤ 11 at mid–height and

mid–radius, as a function of time, for Run B. The temperature scale is logarithmic,

from black [log10(Tm/K) = −8.7] to white [log10(Tm/K) = −0.33].

vertical slice, to add to the mid–radius/mid–height analysis done in Section

3. This was done for Runs A–D at four extra points over a short time window

of 1500s in the middle of each run, and the results from Run B are shown

in Fig. 10. Figure 10a shows part of the temperature mode M = 2 time

series (Fig. 6a), along with four other points in the slice (positions shown in

Fig. 10b). Similar oscillations to the central point are seen at the four other

points, suggesting that the oscillation is present throughout the fluid. The

positions of the maxima in time at each of points β − ǫ are the same (the

range of times is at most 10s, which is the separation of individual points

in time in Fig. 10a). The maxima at point α (low-R, high-z) lag behind the

other four points by about 30s. Since this occurs in all four runs, including

the 2AV-d1 case (which is the most similar to standard quasi–periodic 2AV),

it would appear that this feature is typical of amplitude vacillating waves in

the annulus.
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The ubiquity of the oscillations as a nonlinear wave–zonal flow interaction can

be confirmed by analyzing an equivalent time series for the Nusselt number

at one of the sidewalls (Fig. 10c, for R = a, the inner sidewall). The Nus-

selt number is a dimensionless parameter that quantifies the importance of

convective over conductive heat transfer, and is a single value summed over

the whole sidewall. The evolution of the Nusselt number in Fig. 10c takes the

same form as the temperature wave, which shows that the wave phenomenon

being observed is present throughout the whole fluid. The peaks in the Nusselt

number time series lag behind the temperature time series peaks by ∼ 20s, but

this is to be expected as information is passed from the fluid to the boundaries

via heat transfer, not in the other direction. For brevity only the results from

Run B are shown in the figure; the data from the other three runs give the

same conclusions.

Superposition can also be ruled out by examining the time variation of other

wavenumbers in the temperature field. In Fig. 11 the amplitudes of tempera-

ture wavenumbers 1 – 11 are shown graphically as a function of time, at mid-

radius/mid–height for Run B (again over a short time window). The higher

harmonics perform the same oscillations as the dominant mode (although with

a small positive phase shift in the higher harmonics). These two results indi-

cate that the wave behaviour observed here is a global oscillation, and not a

superposition of multiple waves. The conclusions are the same for runs A, C,

and D.

We now verify the connection with the logistic map using two further tests.
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Fig. 12. First, second and third return maps for Runs A and B (left), compared with

the equivalent return maps for the logistic map with (a) r = 3.8 and (b) r = 3.87.

(a) Run A: T = 3.556 × 106 (b) Run B: T = 3.724 × 106

4.2 Higher order return maps

The runs at points A and B were extended to 53,408 s and 40,000 s respectively,

to fill in their attractors and provide a larger number of maxima for the return

maps than there were in the original runs (N.B.: for clarity, the plots in Figs 5

and 6 use the data from these longer runs, except in Figs 5a and 6a). Figure

12 shows the first, second and third return maps generated from these data

(on the left), and on the right the corresponding return maps of the logistic

map using r = 3.8 (run A) and r = 3.87 (run B). For all three return maps,

the similarities between the data and the logistic map are clear.

4.3 Map predictions

The ultimate test of whether the map is useful or not is its ability to predict

the next maximum in the series. For each maximum in the A and B time
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series, the first return map fitted using Equation 1 was used to predict the

next maximum in the sequence. The absolute error in these predictions was

fairly uniformly spread between 0 K and 0.015 K with mean 0.0064 K for run

A and between 0 K and 0.01 K with mean 0.0062 K for run B. Taking the

size of the attractor to be the range in temperature covered by the maxima,

this corresponds to an absolute mean error of 7% of the attractor size for run

A, and 6% for run B. These values again confirm that the quadratic map is

suitable to describe the sequence of temperature maxima.

5 Lyapunov exponents

Fig. 13. Lyapunov exponents calculated from the TM=2(t) time series for each sim-

ulation in Fig. 9.

Finally, we verify that the 2AV–d flows in the bifurcation sequence are chaotic

by computing estimates of their maximum Lyapunov exponents. If the dynam-

ics follow the logistic map structure exactly, regimes 2AV–d1 through 2AV–d3
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should not be chaotic and 2AV–dh should be chaotic. Deterministic systems

with a single positive Lyapunov exponent λmax > 0 that display aperiodic

long–term behaviour satisfy the conditions for chaos [30, p.323]. Wolf et al.

[31] define the ith Lyapunov exponent as

λi = lim
t→∞

[

1

t
log2

(

pi(t)

pi(0)

)]

,

where pi(t) is the length of the ith principal axis of the hyperellipsoid formed

by deformation of an infinitesimal hypersphere under the action of a dynamical

system. We use their algorithm to estimate the largest non–negative exponent

of the time series TM=2(t). The algorithm itself calculates the exponent by first

reconstructing the time series using a singular systems reconstruction [21, 32].

The exponent is then calculated from the long–term divergence of a pair of

nearby orbits in the reconstructed phase space; the pair of starting points is

chosen so that their separation in the original time series is at least one orbital

period, to ensure the points are on different trajectories. When the separation

between the trajectories reaches a particular length scale, or after a specified

propagation time, a new point on the attractor is chosen close to the first

trajectory along the line made between the two trajectories. By repeating this

process, the long–term behaviour of a single principal axis vector is found.

In each case the exponent was measured by running the algorithm for em-

bedding dimensions 3 ≤ DE ≤ 7; the maximum and minimum length scales

were represented by 20% of the attractor diameter [peak to peak difference in

TM=2(t)] and 0.1% of the attractor diameter respectively, and a propagation

time of 25% of the vacillation period was used. The exponent is the value that

λmax(t) asymptotically tends towards, where t is the length of the time series

used to define the attractor (as t → ∞ the whole attractor becomes available,
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hence the asymptotic value of λmax(t) is appropriate). If the plot did not

contain such a region for this range in DE , the calculation was repeated with

a longer delay time. The exponent was then taken to be the mean value over

the dimensions and ranges in time where this was satisfied (the plot for 2048

points in Fig. 10 of Wolf et al. [31] gives an example of an appropriately flat

region).

The exponent was calculated for each of the 28 runs, and the results are shown

in Fig. 13, plotted against Taylor number on the same horizontal scale as Fig. 9.

The values are close to zero at low Taylor number, where period–1 and 2AV–d2

behaviour is observed. The rest of the plot is split into two regions of high λmax

near A and D (where the aperiodic behaviour is observed, now confirmed as

chaotic by these exponents), and a region of lower λmax near C, in the 2AV–d3

window. By comparison, λmax calculated for a selection of AV and MAV

runs in Fig. 3 is in the range (−1.2 × 10−4 ± 3 × 10−5) ≤ λmax/ bits s−1 ≤

(6.3 × 10−4 ± 10−4), and for the SV runs it is (1.3 × 10−3 ± 7 × 10−5) ≤

λmax/ bits s−1 ≤ (5.5×10−3±2×10−4). It should also be noted that the runs

in the periodic windows of the bifurcation sequence have Lyapunov exponents

an order of magnitude larger than the exponents for the AV and MAV runs.

We can connect these results with the map predictions in Section 4.3. The

λmax calculated here are of order 0.1 – 1.0 bits / orbit, where the orbital

period is the vacillation period of the dominant wave mode (e.g. Fig. 2b). The

error–doubling time is therefore a few orbits, so we would not expect even a

near-perfect map to predict successive maxima with perfect precision. In this

light, a mean error of only ∼6% in the predictions is encouraging.
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6 Discussion

Behaviour resembling the logistic map has not been reported previously in the

thermally-driven baroclinic rotating annulus, but there is a precedent else-

where in the study of rotating fluids. Figures 6–8 of Hart [12] demonstrate

period–doubling behaviour in a two layer open cylinder laboratory experiment

driven by differential rotation, varying the ‘friction parameter’ at constant ro-

tational Froude number (similar to varying T at constant Θ). Period–doubling

has also been seen numerically in a number of truncated models [33, for ex-

ample], but not in full models like this one.

Most of the literature on period–doubling in laboratory fluid systems is in the

area of Rayleigh–Bénard convection [8–11]. Period–doubling is presented as

one of a number of possible routes to chaos or turbulent convection, and is

identified primarily through spectral analysis of time series. Similar analysis is

possible here, but as the fine detail of parts of the sequence was not explored

(particularly the bifurcations before the first chaotic window) this analysis is

less conclusive. The appearance of subharmonics can be seen between Figs 2c

and 7b: f/3 and f/1.5 are present in 7b but not in 2c. Evidence is limited

elsewhere, however. Furthermore, the lack of runs in the region of the sequence

where the initial bifurcations take place means that values of the Feigenbaum

constants [6] cannot be calculated for our sequence. This is unfortunate, as

they would allow further verification of the dynamics as well as comparison

with the Rayleigh–Bénard system, where the data were accurate enough for

these constants to be calculated.

It may be possible to observe period–doubled amplitude vacillation in the
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laboratory in real annulus experiments. At the most crowded point along our

sequence, the points differ in rotation rate by ∆Ω ≈ 0.002 rad s−1, and in tem-

perature difference by ∆(∆T ) ≈ 0.05 K. By comparison, laboratory rotation

rates are typically stable to ±0.0004 rad s−1, and temperature differences to

±0.02 K [34]. It may also be easier to derive the Feigenbaum constants using

laboratory results, if similar methods to the Rayleigh–Bénard work are used.

In conclusion, the evidence from Figs 5–8, 9, and 12 strongly supports an

underlying structure similar to the logistic map. It adds to the already rich

range of behaviour observed in the rotating annulus over the years. A bet-

ter quantitative analysis of this regime would require more simulations run

for longer, but due to the time constraints imposed by the simulation this is

computationally very expensive. Finally, the bifurcations we have described

here are much simpler than the regime transitions that occur in the dynamical

equations themselves; we have found evidence for an underlying simplicity in

these complicated flows, which is an important step towards understanding

them more generally.

RMBY acknowledges support via NERC Studentship NER/S/A/2005/13667,

and thanks A. A. Castrejón–Pita for a useful suggestion during revision. We

also wish to thank two anonymous reviewers for their comments.

A MORALS’s equations of state

The equations solved by MORALS are closed by an equation of state ρ(T ), and

two ‘constitutive’ relations for diffusion coefficients ν and κ:
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Viscosity / 10−2 cm2 s−1:

ν = 1.620
[

1 − 2.790 × 10−2(T − TR) + 6.730 × 10−4(T − TR)2
]

(A.1)

Density / g cm−3:

ρ = 1.043
[

1 − 3.070 × 10−4(T − TR) − 7.830 × 10−6(T − TR)2
]

(A.2)

Thermal diffusivity / 10−3 cm2 s−1:

κ = 1.290
[

1 + 2.330 × 10−3(T − TR)
]

(A.3)

TR = 22◦C in each case.
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