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Abstract: The Brier score is widely used in meteorology for quantifying probability forecast quality. The score can be decomposed
into terms representing different aspects of forecast quality, but this implicitly requires each forecast-verification pair to be allocated
equal weight. In this note an expression is derived for the decomposed Brier score which accounts for weighted forecast-verification
pairs. A comparison of the unweighted and weighted cases using seasonal forecasts from the ENSEMBLES project shows that
when weights are assigned proportional to the area represented by each grid point (weighting by cosine of latitude), the weighted
forecasts give improved Brier and reliability scores compared with the unweighted case. This result is consistent with what is
expected given that tropical predictability is generally better than extratropical predictability.
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1 Introduction

The Brier (1950) score is widely used in meteorology for
scoring probability forecasts with two mutually-exclusive
outcomes (e.g. yes rain / no rain). For N forecast-
verification pairs, the Brier score is'
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n=1

where p,, is the forecast probability for the first of the two
outcomes to occur at verification point n, and

-

The expression in Eq. (1) implicitly assumes each of the
forecast-verification pairs will be assigned equal weight.
In some situations this is not appropriate, however, and
each pair should be weighted accordingly. The weighted
Brier score is

1 First outcome occurs
0 Second outcome occurs
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where w,, is the weight assigned to forecast-verification
pair n, and in this note general w, is assumed.
Murphy (1972, 1973) derived a decomposition of the
non-weighted Brier score that splits it into terms rep-
resenting observational uncertainty, forecast reliability,
and forecast resolution. This decomposition is in com-
mon use, for example when using the attributes dia-
gram (Hsu and Murphy, 1986). In this note an analo-
gous decomposition is derived for weighted forecast-
verification pairs. Hersbach (2000) has derived the equiv-
alent weighted decomposition for the continuous ranked
probability score.

2 When is weighting appropriate?

The decomposition derived in this note should only be
applied in situations where weighting is suitable or nec-
essary. While the decomposition applies for any well-
defined weighting of forecast-verification pairs, it is useful
to consider which situations are suitable for weighting and
which are not.

A common situation which might require weighting
is when the pairs are distributed non-uniformly in space,
and a score is required which is representative of the
whole domain. This could be over a regular grid such as
the latitude-longitude grid (Fig. 1, top), where weighting
each grid point by the cosine of latitude would approx-
imate spatial integration (Jung and Leutbecher, 2008, for
example). If there is some latitudinal variation in the Brier
score or its components, then the effect of weighting can
be substantial. Or it could be over an irregular set of
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Figure 1. Three situations where weighting might be appropriate.
Top: the latitude-longitude grid; for an average score it might be
appropriate to weight the score for each grid element by the cosine
of latitude. Middle: a set of irregularly-spaced points over a domain.
If a Brier score is required that is representative of the whole domain
then it might be appropriate to assign the points near B more weight
than those near A, as the points near B are generally representative
of larger areas. Bottom: a similar situation for weighting in time. If
the score is representative of the whole time series then it might be
appropriate to assign more weight to the points near B, as each one
represents a longer period of time.

points such as a network of weather stations (Fig. 1, mid-
dle), where each station is representative of a different
area. Alternatively, there might be a degree of redundancy
between the observation stations in the more densely
observed areas, so it might be appropriate to assign lower
weight there.

Another situation that might require weighting is a
series of forecast-verification pairs over time at a single
point in space (Fig. 1, bottom). If the score represents
the entire time series, then it might be appropriate to
weight each pair by the length of the segment it represents.
Alternatively, if the quality or reliability of observations
changes over time (earlier verification samples may be
less reliable or accurate because they used less advanced
measurement techniques or a sparser observation network,
for example), then it might be appropriate to assign less
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weight to the pairs with lower-quality observations. If
specific regions of the domain are known to produce
consistently unreliable observational data, then weighting
might be appropriate even when the pairs are uniformly
spaced.

There are also situations where the forecast-
verification pairs are not distributed uniformly yet weight-
ing is not appropriate. For example, a domain with very
different climatological situations in two regions: a moun-
tainous region with highly complex climate and many
observation stations, and a plain region with few obser-
vation stations and a homogeneous climate. In this situa-
tion it would probably not be appropriate to assign higher
weight to the observations on the plain just because each
one is representative of a larger area, because the more
complex climate in the mountains means the degree of
redundancy between observations in the two regions may
be comparable. Another example is when calculating the
economic value of a forecast based on a cost/loss analy-
sis (Wilks, 2001). Although the value score represents the
whole domain it is based on total costs and total losses,
which are just the sums of the costs and losses at individ-
ual points.

Overall, whether to weight or not depends on context.
Whether the observations should be weighted is just as
important in the interpretation of the results as the scores
themselves. The derivation below assumes nothing about
the weights themselves, however, so it is applicable in any
situation where weighting is applied in practice.

3 Derivation of the weighted decomposition

Begin by defining

N
W=> w, )
n=1
as the total weight for the N pairs. The w, could be
normalized (so that W =1 or W = N, for example),
but W is retained here for generality. Following Murphy
(1972), assume the forecast probability p,, can take any
one of a fixed number of values; ordinarily these p,, are
determined by the size of the forecast ensemble. For M
ensemble members, p,, can take one of 7' = M + 1 values

ptzu te{1,2,..,M+1} 5)
where ¢ — 1 is the number of ensemble members that
predict the first of the two mutually exclusive outcomes
will occur (Eq. 2). The Brier score can therefore be split
into 1" categories BS', t € {1,2,..., T}, each concerning
the Nt cases whose forecast probability is p’. Since by

construction p,, = p' for all n in category ¢, then
Nt

t(ot t )2
n=1

Nt

t
> wl
n=1
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where the w!, are the weights assigned to the N forecast-
verification pairs with p,, = p', and d, is the outcome for
the nth pair in category .

Now define a second sum

Nt
t_§: t
w = wy,

n=1

as the total weight in category ¢. Expand Eq. (6) and
substitute in from Eq. (7) to get

)

ot - 1 &
BS'= () = 5 > wndy + — > wi(d)? (8
n=1 n=1

The final (df)? can be rewritten as d,, because d, can
only take values of one and zero. Hence

ot — 1 &
BS' = () — ==Y wid, )
n=1
Define a third quantity
e
dt = — > whdl, (10)
n=1

which is the (weighted) relative frequency of the first
outcome for forecasts in category ¢. Hence

(")~ (20" = D)d'
_ (pt _ Jt)Q +Jt(1 _ d_t)

BS' (1D

(12)

by completing the square. This form is analogous to
Eq. (3) in Murphy (1972) but with d* defined for weighted
forecasts.

Now sum over the probability categories 1 — T to
recover the full Brier score. Each BS' is weighted by the
total weight in category ¢. Hence

T
1
BS = — iBgt 1
S W;:lw S (13)

Substituting in from Eq. (12) gives

1 r =\ 2 1 r - -
BS = W ;wt (pt—d")" + W tz_;wtdt(l —d"
(14)
which is the ‘original partition’ of the Brier score defined
by Murphy (1973, his Eq. 2) but for weighted forecasts.
The first term on the r.h.s. represents the contribution to
the Brier score due to the forecast reliability, denoted
REL.
Now proceed similarly to Murphy (1973). Expanding
the second term on the r.h.s. of Eq. (14):

T T
1 - 1 _
BS = REL tgt t 3t\2 1
S=R +—WE w'd —W;:1w(d) (15)

t=1
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and define a fourth sum as the second term on the r.h.s. of
the equation above:

T

;1 t gt

d= 1 > w'd (16)
t=1

In Murphy (1973), d is the overall observed relative

frequency of the first outcome. It can be shown that

Eq. (16) is the equivalent for the weighted decomposition
by substituting in for d* from Eq. (10), giving:

1 X
d:W;wndn

which is just the weighted overall relative frequency of the
first outcome. Hence

a7

T
_ 1 _
REL d——E: tdhH?
+ Wtzlw()

BS = (18)

= REL+d—d?
1 T
—{WZwt(dt)2—2d2+cF} (19)
t=1

= REL+d(1—d)—{--} (20)
The second term on the r.h.s. is the observational uncer-
tainty for weighted forecasts, denoted UNC. Finally con-
sider the term in braces; by expressing the second and
third parts as sums and using Eqns (4) and (16), it is
straightforward to show that this term is

T
RESE%Zwt (d —d)* 1)
t=1

which is the forecast resolution term. By putting these
together the decomposed Brier score for weighted
forecast-verification pairs is obtained:

BS = UNC+ REL — RES (22)
= d(1-d)
1 t [t citz
+W;w (p" —d")
1 o t(Tt 2
—W;w (d' - d) (23)

where W is given by Eq. (4), p’ by Eq. (5), w’ by Eq. (7),
d' by Eq. (10), and d by Eq. (17).

4 An illustration using seasonal forecasts

The effect of weighting on the Brier score and its decom-
position is illustrated in this section with an analysis of
seasonal forecasts from the EU ENSEMBLES project
(Hewitt, 2005; Doblas-Reyes et al., 2009). To illustrate
the method, a weighting function is used that has pre-
dictable results: seasonal predictability is generally higher

Q. J. R. Meteorol. Soc. 136: 1364—1370 (2010)
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at tropical latitudes compared with extratropical latitudes,
so a weighting that favours the lower latitudes should pro-
duce better verification scores than the unweighted case.

The forecasts used are Stream 2 forecasts from five
of the models used in the project: ECMWF IFS/HOPE,
MeteoFrance ARPEGE4/OPA, Met Office HadGEM?2,
INGV ECHAMS/OPAS.2, and Kiel ECHAMS/OMI*,
Many datasets are available from these forecasts, so the
analysis is restricted to the following: Each forecast con-
sists of nine initial condition ensemble members started
from 1 May for each of the years 1991-2001, and the
quantity predicted is the monthly mean temperature 2 m
above the surface for each of the subsequent seven months
(i.e. a lead time of one month represents the mean from 1
May to 31 May). The forecasts were re-gridded from their
original model grids® using the Climate Data Operators
first order conservative remapping command remapcon
onto a regular latitude-longitude grid of 2.5° spacing in
both directions. They are verified grid point-wise against
the ERA-40 reanalysis dataset (Uppala et al., 2005)¥ valid
at the same locations, which gives N = 10512 for the total
number of forecast-verification pairs at each lead time.

For the purpose of this example, a suitable event must
be defined for the forecasts to predict. The event to predict
is as follows: The monthly mean 2 m temperature will
be above the climate mean 2 m temperature, where the
climate mean 2 m temperature is defined using the ERA-
40 dataset as the mean of this quantity over the period
1961-1990 for each grid point and month.

For each forecast (i.e. for each of the models, for each
of the eleven years forecast), the nine ensemble members
were used to compute a probability forecast p,, for this
event to occur at each grid point n. The probability is
given by the number of ensemble members predicting a
higher 2 m temperature than the climate mean, divided
by the number of ensemble members. For each ensemble
forecast this was done for each lead time, up to seven
months ahead. The verification value d,, was then found
by comparing the ERA-40 reanalysis value at that time
with the climate mean for the appropriate month.

An example of one such probability forecast, show-
ing p, at each point, is shown in the top panel of Fig. 2
along with the verification d,, in the middle panel.

The Brier score for the forecast was then calculated
using Eq. (3) as a global statistic over all the grid points,
and the decomposition was calculated using Eq. (23).
This was done for an unweighted forecast, setting w,, =
1 for each grid point, and for a weighted forecast. An
appropriate weighting function is to assign weight to each
grid point proportional to the area of the globe that the
point represents. For grid points at latitude )\; separated in

fDetails of the experiments run as part of the ENSEMBLES
project are listed at http://www.ecmwf.int/research/EU_projects/
ENSEMBLES/table_experiments/

8N80 Gaussian reduced grid for ECMWF; regular long-lat grid of
192 x 145 points for the Met Office; N48 Gaussian grids for Kiel and
INGYV, and reduced 128x64 Gaussian grid for MeteoFrance.
Yhttp://www.ecmwf.int/products/data/archive/descriptions/e4/
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Figure 2. Example of a probability forecast of 2 m temperature
used in the seasonal forecast analysis, showing results from the
Met Office HadGEM?2 forecast starting from 1 May 1991 and
verifying against monthly means calculated between 1 August and
31 August (lead time four months). Top: Probability p,, assigned by
the forecast at each grid point to the event occurring (monthly mean
greater than climate mean for that month). Middle: Observed result
dy at each grid point. Bottom: Relative contributions w, (pn —
dn)? to the Brier score from each grid point for the weighted
forecast, using the weights in Eq. (24).

latitude by A, this weighting function is given by/

cos [Aj]sin [$AN]  —90° < \; < 90°
wy, = (24)
sin® [$AN] Aj = £90°
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where multiplicative factors constant at each grid point are
omitted without loss of generality. This weighting clearly
favours the low latitudes, and so better verification scores
are expected than in the unweighted case, because sea-
sonal predictability is generally higher at tropical latitudes
compared with extratropical latitudes.

For the example forecast in Fig. 2, the contribution
to the weighted Brier score from each point on the grid is
shown in the bottom panel of that figure. For this particular
forecast at lead time four months, the Brier score and its
components are

Unweighted Weighted

Brier score  0.401 0.339
Uncertainty  0.210 0.227
Reliability  0.193 0.116
Resolution  0.00227 0.00392

The weighting function used in Eq. (24) assigns more
weight at lower latitudes, so it is expected that the
weighted forecasts will produce better verification scores
than the unweighted case, because of the variation in sea-
sonal predictability with latitude. The example shown in
Fig. 2 confirms this prediction: in the table the Brier score
and reliability component are lower for the weighted fore-
cast, and the resolution component is higher.
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Figure 3. Brier score and its components for the Met Office

HadGEM?2 forecast as a function of lead time from 1 May 1991.

From left to right, top to bottom: Brier score, uncertainty, reliabil-

ity, and resolution components. In each plot the solid line is the

unweighted case and the dotted line is the weighted case using the
grid point weights in Eq. (24).

But is this a general result? Two more analyses are
now presented: a single forecast verified over several
months, and all the models and years available for analysis
in combination. First, in Fig. 3, the scores for the weighted
and unweighted cases are shown as a function of lead time
for the Met Office HadGEM?2 1991 forecast (the same
forecast as Fig. 2). In this forecast the weighted forecast
produces better scores than the unweighted forecast at all
lead times, as predicted.

Second, the same analysis is extended to all the
models and years for which results are available. The

Copyright (©) 2010 Royal Meteorological Society

0.006 [ ' ' '

0.004 | .

2
Q
(@}
N
T
1

0.000 | .

UNC,—UNC,

-0.002} .

—0.004 | .

-0.006t . . .
0 2 4 6 8
Forecast lead time / months

0.06[ ) ) )

0.04} ]
0.02fF

0.00F

REL,—REL,

-0.02

-0.04}

-0.06L . . L

Forecast lead time / months

0.010[ T T T

0.005F ]

0.000F

RES,—RES,

-0.005} 1

-0.010L . . L

Forecast lead time / months

Figure 4. Difference in the Brier score components between the
weighted and unweighted cases for all of the models and years
considered. From top to bottom: uncertainty, reliability, and reso-
Iution components. Each line represents one model, and the value at
each lead time is the difference between weighted and unweighted
values of the mean score over all the years for which forecasts
were analysed. The uncertainty appears as a single line as that
quantity is a function of the observations only. The models are as
follows: ECMWF IFS/HOPE (—), Met Office HadGEM2 (- - -),
Kiel ECHAMS/OM1 (— — —), INGV ECHAMS/OPAS (— - —),
and MeteoFrance ARPEGE4/OPA (— - - -).

same calculations were done for all five models from 1991
to 2001. For ease of visualisation, the results were then
combined for each model into a mean at each lead time

Q. J. R. Meteorol. Soc. 136: 1364—1370 (2010)



6 R. M. B. YOUNG

over all the years analysed. These results are presented
in Fig. 4. The differences between the weighted and
unweighted cases for the Brier score (not shown in the
figure) and the reliability component behave as predicted
when latitudinal-based weighting is applied. The values in
the weighted case are lower than in the unweighted case,
as expected if the grid points where predictability is higher
are favoured by the weighting scheme. The ECMWF
model seems to behave in the opposite way, however, with
the Brier score and reliability component becoming poorer
when weighting is applied. Perhaps there is a bias in the
ECMWEF model that causes it to perform more favourably
than the rest of the models at extratropical latitudes, or it
might be because the ECMWF model is the same one used
to create the ERA-40 dataset used for verification.

The differences in the resolution and uncertainty
between unweighted and weighted cases have a smaller
effect on the Brier score than the reliability. From Fig. 4,
the relative contributions to the change in the Brier score
when weighting is applied are approximately in the ratio
1:10:1 for uncertainty : reliability : resolution. Looking
at the resolution scores, the predicted result is obtained
for short lead times, as the resolution score increases with
weighting. After three months lead time there is either no
difference or a slight bias towards poorer scores when grid
points are weighted. This may be partly because at lead
times beyond two months resolution scores are close to
zero anyway; see the bottom right hand panel of Fig. 3,
for example.

The difference in the uncertainty scores is slightly
anomalous, as the scores are marginally larger in the
weighted case than in the unweighted case. As uncertainty
can be interpreted as a measure of the intrinsic difficulty of
the forecast, the uncertainty might be expected to decrease
as more weight is assigned to regions where the behaviour
is easier to predict. This result can be explained by exam-
ining the verification data, however. The definition of the
event being forecast means that the expected value of d
is 0.5 over the period covered by the climate mean. If the
monthly mean temperature increases (decreases) after the
end of the climate mean period, however, d will increase
(decrease) because the probability of being greater than
the climate mean rises above (falls below) 0.5. For both an
increase and decrease the uncertainty will decrease, how-
ever, as it is equal to d(1 — d). The amount d changes (and
hence the amount the uncertainty falls) varies directly with
the monthly mean temperature change. If the weighted
uncertainty is larger than the unweighted value, therefore,
the weighting must be assigning more weight to regions
where temperature changes /ess between the climate mean
period and the verification time. The result in Fig. 4 there-
fore predicts that the temperature over the 1991-2001
period has changed (with respect to the climate mean)
more in the extratropics than in the tropics. In Fig. 5
this temperature anomaly is plotted for May, comparing
the mean of the 1991-2001 monthly mean temperatures
with the mean of the 1961-1990 period. The anomaly is
greater in the extratropics than in the tropics, confirm-
ing the prediction and explaining the uncertainty results

Copyright (©) 2010 Royal Meteorological Society

above. Equivalent plots for other months give the same
result, and in some cases the difference between low and
high latitudes is even greater than the example shown here.
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Figure 5. Temperature difference between the mean of monthly

mean 2 m temperatures for May in the period 1991-2001 compared

with the equivalent climate mean over 1961-1990. The dotted line
is the zero contour.

5 Concluding remarks

In this note a decomposition of the Brier score has been
derived for weighted forecast-verification pairs, and its
use has been illustrated for seasonal forecasts weighted
according to the area represented by each grid point, i.e.
proportional to the cosine of latitude. The weighted fore-
casts in the example give improved Brier and reliabil-
ity scores compared with the unweighted case, consistent
with what is expected given that tropical predictability is
generally better than extratropical predictability.

The new decomposition has a few consequences
for other verification scores. The attributes diagram
(Hsu and Murphy, 1986) plots forecast probability against
observed relative frequency. For weighted pairs the ordi-
nate on the attributes diagram should be changed to the
weighted expression for d* (Eq. 10), and the point size
used to represent each forecast probability should be
changed from the total number of observations in that cat-
egory to the total weight in that category, w® (Eq. 7).

The Brier score and its decomposition are often
computed using a contingency table like Table 1 of
Murphy and Winkler (1987). When weighted forecast-
verification pairs are used, each element of the table is
changed from the number of pairs with that combination
of forecast and outcome to the total weight assigned to
pairs with that combination. Equivalently, the contingency
table for the whole forecast is a weighted sum of the con-
tingency tables for each individual pair.

Weighting can also be applied to other scores. The
ignorance score (Roulston and Smith, 2002) is defined
by IGN = —log, f;, where f; is the forecast probability
assigned to the observed outcome. Averaging over N

Q. J. R. Meteorol. Soc. 136: 1364—-1370 (2010)
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forecast-verification pairs with weights w,, gives

N
1
(IGN) = —5= > walogy f(n)jm) (25
n=1

oy [y
n=1

where W is defined by Eq. (4). The quantities used to
calculate points on the relative operating characteristic
curve (Wilks, 2001, Fig. 4) are also affected by weighting:
the hit rate and probability of false detection scores
used to create the curve need to be calculated using the
weight assigned to each element of the contingency table
instead of the number of pairs. Finally, when constructing
the rank histogram, using a set of weighted forecast-
verification pairs means changing the value for each
ensemble member bin from the number of pairs where the
verification falls within that bin to the total weight of pairs
falling within that bin.

(26)
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