

Corrigendum to

"Breeding and predictability in the baroclinic rotating annulus using a perfect model" published in Nonlin. Processes Geophys., 15, 469–487, 2008

R. M. B. Young and P. L. Read

Atmospheric, Oceanic and Planetary Physics, Department of Physics, University of Oxford, UK

The authors regret that there are a number of minor errors in this paper, which should be corrected. They do not affect the results or conclusions of the work.

The Taylor numbers (\mathcal{T}) and thermal Rossby numbers (Θ) quoted in this work are incorrect. Our calculations of \mathcal{T} and Θ used the kinematic viscosity $\nu = 1.66 \times 10^{-2} \text{ cm}^2 \text{ s}^{-1}$ and volumetric expansion coefficient $\alpha = (-1/\rho)\partial\rho/\partial T = 2.86 \times 10^{-4} \text{ K}^{-1}$ from the "main comparison" in Table 1 of Hignett et al. (1985), but the values in this table apply to laboratory measurements. Because we used the equations below that table in our numerical model to calculate ν and ρ as a function of temperature, we should instead have used these equations to find the values of ν and α when calculating the Taylor and thermal Rossby numbers. These equations give $\nu = 1.715 \times 10^{-2} \text{ cm}^2 \text{ s}^{-1}$ and $\alpha = 2.755 \times 10^{-4} \text{ K}^{-1}$ at 20 °C. The equations used to calculate the fluid parameters are already included in our model, so just the quoted values are incorrect.

Taylor number varies with ν^{-2} , so to obtain the correct values our quoted Taylor numbers are multiplied by

$$\left(\frac{1.66 \times 10^{-2}}{1.715 \times 10^{-2}}\right)^2 = 0.9372$$

Thermal Rossby number varies with α , so to obtain the correct values our quoted thermal Rossby numbers are multiplied by

$$\frac{2.755 \times 10^{-4}}{2.86 \times 10^{-4}} = 0.9633$$

For the same reason the quoted Prandtl number is incorrect. Using the equations in Hignett et al. (1985) the thermal diffusivity is $\kappa = 1.284 \times 10^{-3} \text{ cm}^2 \text{ s}^{-1}$ at 20 °C, which makes the Prandtl number ν/κ quoted in Table 1 equal to 13.4 instead of 13.1.

Correspondence to: R. M. B. Young (young@atm.ox.ac.uk)