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The thermally-driven rotating annulus is a laboratory experiment important for the
study of the dynamics of planetary atmospheres under controllable and reproducible
conditions. We use the analysis correction method to assimilate laboratory data into an
annulus model. We analyse the 2S and 3AV regular flow regimes between rotation rates
of 0.75 and 0.875 rad s−1, and the 3SV chaotic flow regime between rotation rates of 2.2
and 3.1 rad s−1. Our assimilated observations are irregularly-distributed, which is more
meteorologically realistic than gridded observations, as used in recent applications of
data assimilation to laboratory measurements. We demonstrate that data assimilation
can be used successfully and accurately in this context. We examine a number of specific
assimilation scenarios: a wavenumber transition between two regimes, information
propagation from data-rich to data-poor regions, the response of the assimilation to
a strong disturbance to the flow, and a vortex shedding instability phenomenon at high
rotation rate. At the highest rotation rates we calculated the barotropic E-vectors using
unobserved variables such as temperature and the vertical structure of the velocity
field that are only available via the assimilation. These showed that the mean flow is
weakened by the action of eddies, going some way towards explaining why vortices are
shed at the very highest rotation rates but not at lower rotation. Rossby wave stability
theory suggests the underlying instability leading to vortex shedding may be baroclinic
in character.
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1. Introduction15

The analysis is a meteorological term referring to the best estimate of a system’s true state. It cannot be known exactly in practice16

because observations have finite density and intrinsic measurement error, but it can be estimated by combining sources of information17

about a system in a statistically and dynamically robust fashion; this is data assimilation. Data assimilation combines these sources in18

a way that minimizes the combined error, usually in a least-squares or maximum-likelihood sense. In the atmospheric sciences these19

sources are usually observations, a numerical model, climate distributions, and theoretical relationships between different physical20

quantities.21

Data assimilation is most commonly used to produce initial conditions for weather and climate forecasts. It is also used to estimate22

the state in regions with few or no observations by using the model to pass information from data-rich to data-poor areas (Thompson23

1961), to retrieve unobserved variables, identify weaknesses in the forecast model and the observational network, produce surrogates24

of the true state of the system for further study, and for reanalysis, where old data covering an extended period are assimilated into a25

model using a single method.26

Daley (1991), Kalnay (2003), and others provide good overviews of the underlying principles and details of many different27

assimilation methods. The earliest methods simply interpolated observations onto a model grid (Panofsky 1949; Gilchrist and Cressman28

1954). Sequential methods correct a first guess from climate or a previous forecast using observations as they become available29

over time, with the correction from each observation depending on the relative errors between a first guess and that observation30
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Data assimilation using a rotating annulus experiment 2

Figure 1. Left: Photograph of a rotating annulus experiment used in the AOPP fluid dynamics laboratory (image courtesy A. A. Castrejón-Pita). Right: Schematic of the
experiment. Inner and outer cylinders at radiiR = a, b are at temperatures Ta and Tb respectively, rotating at constant angular velocity Ω, and fluid is contained between
the cylinders.

(Bergthórsson and Döös 1955; Barnes 1964; Lorenc et al. 1991). Variational methods minimize a cost function based on the relative31

sizes of observation and first guess errors with respect to the system state (Sasaki 1970; Lorenc et al. 2000; Rawlins et al. 2007).32

Ensemble methods exploit the statistics of a forecast ensemble (Evensen 1994; van Leeuwen 2010). Finally, gradient descent filters33

look for model trajectories that ‘shadow’ observations using the full nonlinear forecast model (Stemler and Judd 2009; Judd et al.34

2008). Data assimilation is a vibrant area of research, and there is as much need now for new approaches to these problems as there35

was in the 1960s.36

The rotating annulus (Fig. 1) is a laboratory experiment that has been used for several decades to study the fundamental mechanisms37

underlying weather and climate under controlled and reproducible laboratory conditions. In its ‘standard’ configuration, a fluid annulus38

is contained between two coaxial circular cylinders. One heats the outer cylinder and cools the inner cylinder, while rotating the39

apparatus about its central vertical axis. This mimics the main influences acting on an Earth-like planetary atmosphere: gravity, rotation40

of the planet, and a temperature gradient between low and high latitudes. The experiment reproduces a wide range of Hadley cell-type,41

Rossby wave-type, vacillating, chaotic, and turbulent flow regimes depending on the fluid, dimensions, and forcing parameters (Hide42

and Mason 1975; Hignett et al. 1985; Read et al. 1992). In general the flow reflects the large-scale atmospheric flow patterns observed43

in the mid-latitudes of the Earth (and other terrestrial planets; Fultz 1951, for example). As the processes governing the atmospheric44

circulation and the laboratory rotating tank are similar, then similar methods may be used to study their behaviour. Applying such45

methods in one context may provide insights into their use in the other.46

In this paper we use data assimilation to assimilate a number of rotating annulus observational datasets into a numerical model.47

This is a necessary part of a larger body of work studying the predictability of the rotating annulus experiment, which will be reported48

on elsewhere. Here we apply data assimilation in isolation to study the experiment and explore phenomena using variables only49

accessible via the assimilation process. For example, our observations contain a vortex shedding phenomenon at high rotation rates,50

whose behaviour cannot be understood without unobserved variables such as the fluid’s vertical structure and temperature. We use the51

observations to demonstrate that data can be assimilated accurately into a model of the rotating annulus, measuring the accuracy of52

the assimilation against an independent set of velocity observations. While being able to do this with an appropriately-tuned method53

is not too surprising with hindsight, it is not immediately clear a priori that this is straightforward given that annulus observations are54

generally highly incomplete.55

We use the analysis correction method (Lorenc et al. 1991, hereafter L91), which is a well-established sequential assimilation56

technique. The UK Met Office used it operationally from 30 November 1988 (L91, p.82) until implementing 3D-Var on 29 March57

1999 (Lorenc et al. 2000). For inclusion within a larger framework focusing on predictability rather than the properties of the method58

itself, the method is attractive for three main reasons. First, it is a relatively simple assimilation technique whose implementation59

is considerably cheaper than more advanced techniques, for only a small loss in accuracy. Second, groups at Oxford and the Open60

University use it in the context of Martian atmospheric data assimilation (Lewis et al. 1996; Montabone et al. 2006), so there is some61

local expertise on its use. Finally, a linearized version of our rotating annulus model was not available when the algorithm was designed,62

which precluded use of variational methods like 4D-Var.63

Using our algorithm we produce sequences of analyses over three 3-hour sets of laboratory observations in two regular (non-64

chaotic) and one chaotic flow regime. The main features of the regular flow regimes (wavenumber-2 steady flow 2S and wavenumber-365

amplitude vacillation 3AV) are a baroclinic wave and an amplitude vacillation cycle over a period of several hundred seconds (Hide66

and Mason 1975, Fig. 5, for example). We also analyse a chaotic flow regime (wavenumber-3 structural vacillation 3SV), which is67

characterised by a baroclinic wave whose shape changes over time but whose amplitude remains approximately constant.68

We know of two previous attempts at data assimilation in rotating laboratory experiments. First, Galmiche et al. (2003) and Thivolle-69

Cazat et al. (2005) studied vortex evolution at the CORIOLIS facility, a 13 m diameter open rotating tank in Grenoble. They used70

an extended Kalman filter method on their experimental data to assimilate it into an ocean model. Second, Ravela et al. (2010)71

assimilate rotating annulus data into a stripped-down General Circulation Model using the ensemble Kalman filter (Evensen 1994).72

Their experimental and model setup is similar to ours but with a few important differences. They use a hydrostatic model while ours73

is Boussinesq non-hydrostatic, and their model grid is regularly spaced while we use a stretched grid to resolve the boundary layers.74

Their work is impressive as they can assimilate observations and update the model in real time before recording the next observations,75

but updating the model in real time is not a priority in our work.76

The most important difference between this work and the two previous attempts is the method used to obtain the observations.77

Galmiche et al. (2003) used correlation image velocimetry and Ravela et al. (2010) used particle image velocimetry to obtain78
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Data assimilation using a rotating annulus experiment 3

Table 1. Summary of the annulus, fluid, and model properties used by MORALS in this work. The setup is identical to the ‘main comparison’ of Hignett et al.
(1985). The SI contains expressions showing how ν, κ, and ρ vary with T .

Annulus properties
Inner cylinder radius a = 2.5 cm

Outer cylinder radius b = 8.0 cm

Depth of fluid d = 14.0 cm

Model properties
Timestep δt = 0.02 s (expf2)

δt = 0.01 s (expf5, expf6)
Grid points (radial, (NR, Nφ, Nz) = (24, 64, 24)

azimuthal, vertical)
Independent variables 121,088

Fluid properties (all at 20 ◦C)
Working fluid (b.v.) 83% water, 17% glycerol
Density ρ = 1.044 g cm−3

Kinematic viscosity ν = 1.715× 10−2 cm2 s−1

Thermal diffusivity κ = 1.284× 10−3 cm2 s−1

Volume expansion αv = 2.755× 10−4 degC−1

coefficient
Prandtl number Pr = 13.4

gridded velocity observations. Presenting the observations to the assimilation in grid form is not meteorologically realistic, because in79

operational practice the observation network is not regularly spaced and many of the observation points move with time. In this work80

we use observations both irregularly spaced and changing in position over time.81

A final aim of this work, although this particular paper does not address this directly, is to set the foundations for a broader goal82

in which the annulus is used as a testbed for the study and evaluation of new and proposed meteorological techniques not yet in83

operational use. The controllable and reproducible conditions the laboratory annulus provides allow such methods to be tested under84

more rigorous conditions than can be provided solely using atmospheric data. The controllable complexity is particularly important85

because as the complexity of a system is reduced any imperfections in methods used to study it become less obscured by the complexity86

of the system itself. Many studies of meteorological techniques use very low-dimensional systems like the Lorenz (1963) equations,87

and the laboratory scale is a natural bridge between these low-order models and the atmosphere itself, where methods can be tested88

using a real fluid with a non-idealised model and incomplete and noisy observations.89

In the next section we describe our rotating annulus model and the laboratory data to be assimilated. Section 3 describes our90

algorithm for data assimilation using analysis correction. In Sect. 4 we present a series of assimilations using these observations.91

In Sect. 5 we examine the vortex shedding phenomenon at the highest rotation rates, and in Sect. 6 we conclude. The Supporting92

Information (SI) contains more technical details about various aspects of the work, in particular the algorithm itself.93

2. Model and observations94

The numerical model used to simulate the rotating annulus experiment is the Met Office / Oxford Rotating Annulus Laboratory95

Simulation (MORALS) (Farnell and Plumb 1976). The model is well established as a quantitatively accurate model of annulus flow in96

regular and weakly chaotic flow regimes.97

MORALS solves the Navier-Stokes, mass continuity, and heat transfer equations for a Boussinesq fluid rotating at angular velocity Ω98

in a cylindrical fluid annulus, along with a Poisson equation for pressure, a quadratic equation of state for density, and two ‘constitutive’99

relations for viscosity and thermal diffusivity. Apart from the constitutive relations there is no sub-grid scale parameterization. The100

integration scheme is finite-difference accurate to O(δt2), where δt is the model time step, using a Leapfrog scheme with Robert-101

Asselin filter. The equations are discretised on an Arakawa-C grid using cylindrical polar coordinates (R,φ, z). The grid is non-uniform,102

stretched in R and z to resolve the boundary layers.103

The equations are cast in velocity-temperature-pressure form. There are four prognostic variables: u (radial), v (azimuthal) and w104

(vertical) velocities / cm s−1, and temperature T / ◦C. A fifth field, kinetic pressure Π ≡ p/ρ0 / cm2 s−2, is diagnostic, calculated from105

the other four fields using a Poisson equation. The setup is the ‘standard’ thermally-driven annulus configuration (Fig. 1) with inner106

and outer walls maintained at constant temperatures Ta and Tb respectively (temperature difference ∆T = Tb − Ta), constant rotation107

rate Ω, and no internal heating. All velocities are set to zero at the boundaries (rigid lid), and the temperature gradient is zero across108

the top and bottom boundaries (insulating). Table 1 lists the parameters defining the annulus and working fluid, which are identical to109

Hignett et al.’s (1985) ‘main comparison’, and the numerical model.110

We took laboratory data for this work from the AOPP archive of rotating annulus experimental data from 1998, using the expf2,111

expf5, and expf6 datafiles, each of which contains horizontal velocity observations (radial and azimuthal) grouped in datasets every 5 s112

(Fig. 2). The SI contains some details about the data pre-processing.113

The apparatus used allowed measurements at up to five vertical levels in the annulus, 12.4, 9.7, 7.0, 4.3 and 1.6 cm above the bottom114

of the tank. Jackson and Hignett (1984) and Dalziel (1995) detail the method used to take observations. A horizontal plane of light115

∼5 mm thick shines into the tank, and reflects off neutrally buoyant particles into a video camera 1 m directly above the tank, rotating116

in the same coordinate frame and about the same axis. The camera tracks the particles (100–500 per frame) over one second, producing117

a set of images from which particle positions and velocities are calculated. The sequence of observations is staggered: data at the118
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(a) expf2 (b) expf5 (all 3SV)

(c) expf6 (all 3SV)

Figure 2. Rotation rate Ω as a function of time during the three datafiles. The plots also show the position of each assimilation and the parameter tests
listed in Table 2 and presented in Sect. 4, and the flow regime at each rotation rate. Note that the scatter probably represents measurement error and
not real scatter in the forcing.

top level are taken during the first 5 s, followed by 5 s at each of the other heights in turn, then the cycle repeats. No observations of119

vertical velocity, temperature, or pressure are available. Each velocity observation has an error associated with it, which is estimated120

to be 0.0057 cm s−1 in each of the radial and azimuthal directions (see SI for details of this estimate). This error is much smaller121

than the variability in the observed velocities, which is roughly 0.06 cm s−1 for the radial velocities and 0.09 cm s−1 for the azimuthal122

velocities.123

Each dataset is split into two or more subsets, separated by approximately one second. While some individual measurements may124

be the same particle measured twice a second apart, the subsets are sufficiently uncorrelated to be used as independent data. For the125

purposes of the assimilation we assume the subsets are valid at the same time, which simplifies the algorithm and interpretation of126

results. The approximation is justified because the shortest dynamical timescale is significantly longer than a second.127

expf2 starts as wavenumber-3 amplitude vacillation (3AV regime) and finishes about 11 000 s later as a wavenumber-2 steady wave128

(2S). It uses data at all five levels (Fig. 3), so consecutive datasets at a particular level are separated by 25 s. ∆T is approximately129

constant at around 4.05 degC while Ω decreases step-wise from 0.875 to 0.75 rad s−1 (Fig. 2a). There are two subsets within this data,130

‘blue’ and ‘red’ (the SI contains the precise times for each one within the 5 s window).131

expf5 and expf6 both contain about 10 000 s of horizontal velocity data in the chaotic wavenumber-3 structural vacillation (3SV)132

flow regime, Ω stepping up as shown in Fig. 2. ∆T is about 4.02 degC throughout. Only two levels are observed in these datafiles, at133

z = 9.7 cm and 4.3 cm (Fig. 4), so consecutive datasets at each level are separated by 10 s. There are three subsets in expf5 (‘blue’,134

‘red’, and ‘orange’), and two in expf6 (‘blue’ and ‘red’).135

One interesting feature of the expf5 and expf6 datafiles is that the neutrally buoyant particles used to track the flow velocity moved136

so slowly within the cyclones that they dropped out of suspension there (see SI Fig. 7). The piles formed on the base of the tank then137

caused the main baroclinic wave to become phase-locked to the tank, possibly by stimulating a topographic Rossby wave secondary to138

the main wave, with this feedback leading to more particles being deposited in the same place. These piles are not accounted for by the139

free-running model, of course.140

As is clear from Figs 3 and 4, there are more observations at the top of the tank than at the bottom (approximately a factor of four141

difference). This is because the data collection software rejects more particle tracks at the lower levels. The light reflecting off the142

particles and into the camera has to pass through more liquid the lower in the tank the light sheet is, so more particle tracks at lower143

levels will be obscured by particles higher in the tank. The variation over time in the number of observations in each dataset is roughly144

5–10%.145

In each subset roughly 500 data points are sampled, measuring both radial and azimuthal velocities. The ratio of observations to146

grid points is comparable with atmospheric models: compare 1000/121088 ∼ 1% in this context with 105/107 ∼ 1% for a typical147

atmospheric model (Kalnay 2003, p. 13), and note, again, that some quantities are not observed at all.148
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(a) z = 12.4 cm, t = 2000 s,
Nobs = 985

(b) z = 9.7 cm, t = 2005 s,
Nobs = 874

(c) z = 7.0 cm, t = 2010 s,
Nobs = 600

(d) z = 4.3 cm, t = 2015 s,
Nobs = 282

(e) z = 1.6 cm, t = 2020 s,
Nobs = 213

Figure 3. Representative horizontal velocity fields from datafile expf2 at 0.85 rad s−1 (3AV), also showing the number of observations Nobs at each vertical level. The
blue vectors (black in print) show the observations from the subset at 2.8 s through the 5 s window, and the red vectors (grey in print) show the observations at 3.6 s.

(a) z = 9.7 cm, t = 9000 s,
Nobs = 1980

(b) z = 4.3 cm, t = 9005 s,
Nobs = 1260

Figure 4. Representative horizontal velocity fields from datafile expf5 at 2.6 rad s−1. The blue vectors (dark grey in print) show the observations at 0.7 s through the 5 s
window, the red vectors (black in print) at 1.5 s, and the orange vectors (light grey in print) at 2.3 s.Nobs is the number of observations in each figure.

3. Assimilation Code for Analysis Correction In the Annulus149

In this section we describe the method used to perform data assimilation on our annulus data. The core of this method is the analysis150

correction (AC) method developed in L91. The analysis computed by AC, denoted xa, represents the best estimate of the true state of151

the annulus at the analysis time ta given information from observations, short range forecasts, and dynamical relationships between the152

different physical quantities. Each assimilation is done using the Assimilation Code for Analysis Correction In the Annulus (ACACIA).153

L91 contains more details on AC’s underlying principles, and the SI contains full details of its application to MORALS.154

In analysis correction, we step through the observational datafile in sequence. At each analysis time, the method takes a first guess155

or background state xb, compares it with the observed values at the observation points yo, and maps the difference between the two156

onto the model grid using various weighting functions, to give the analysis state xa. The model then runs forward for a short time using157

the analysis as the initial condition, up to the next analysis time, when the model run’s end state is used as the next xb.158

The original background state is taken from a free-running MORALS run, with the fields rotated in azimuth to line up with the159

observations. The observations used in each assimilation are taken from a window stretching forward in time by tb and backwards160

in time by tf relative to the analysis time (or tb back in time and tf forward in time relative to a particular observation), and each161

observation’s contribution is weighted depending on how far the observation is from each grid point, and how close it is in time to the162

analysis time.163

The assimilation window is longer than the time between analyses, so individual observations are used multiple times. This is called164

‘forward continuous repeated insertion’ (Fig. 5). Each observation enters the assimilation window with small influence over a large165
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Data assimilation using a rotating annulus experiment 6

Figure 5. Schematic showing the elements of the analysis cycle, repeated insertion, and the observations contributing to each analysis. The arrows represent the flow of
information, and time increases to the right. tb and tf are the times forward and backwards during which an observation influences the assimilation.

area (Fig. 6), and as the analysis approaches the observation time, the observation exerts more influence over a smaller area. When the166

analysis time has passed the observation time its influence falls away again until it leaves the window. Over time, the analysis converges167

to a state that is dynamically consistent with the sequence of observations both forward and backwards in time.168

Figure 6. Temporal weighting factorRi(δti) and horizontal correlation scale sh (similarly for vertical scale sv) for each observation in the assimilation window, relative
to the analysis time.

Each application of the method produces an analysis according to169

xa
= xb

+ WQ̃
{
yo −H(xb

)
}

(1)

where H interpolates from the model grid to the observation points, and the gain matrix WQ̃ is approximated in component form by170

(L91, Eqs A1.9 and 3.21)171

[WQ̃]ki =
µki

ε2i + (1 + ε2i )
1/2Di

≡ µkiQ̃i (2)

where µki is a combination of horizontal and vertical spatial weighting functions between model grid point k and observation i, Di is172

the time-dependent data density at observation i, and ε2i = (σ2
ii + f2

ii)/b
2
ii is the ratio of error variances for observation i, where σ2

ii is173

the observational error covariance, f2
ii is the interpolation error covariance, and b2ii is the background error covariance interpolated to174

observation i. The background error covariance is estimated from the variability over time at each grid point of the original free-running175

simulation, and is not updated during the assimilation. For the radial velocity (and similarly for azimuthal velocity), Eq. (1) is expressed176

in incremental form for grid point k by (L91, Eq. 3.18)177

δuk = λ
∑
i

µkiQ̃iR
2
i (δti)di (3)

where the first two terms inside the sum come from Eq. (2), R2
i (δti) represents the weighting of each observation in time (Fig. 6),178

di = yi −Hi(ub) is the increment at observation i, and λ is a relaxation coefficient.179

Observation i is weighted depending on the distance rki to grid point k using the expression180

Wki =
(

1 +
rki
s

)
exp

(−rki
s

)
(4)
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Table 2. List of assimilations done. ∆T varies between 4.00 and 4.05 degC — see the SI for precise values.

Name Datafile Regime Assimilated Verifying Ω/rad s−1 tstart/s Length / s Section
subset subset

m2s1 expf2 2S blue red 0.775 8435 750 4.1
m2s2 expf2 2S blue red 0.800 6710 750 4.1
m3av2s1 expf2 3AV→2S blue red 0.825→0.800 5685 750 4.2
m3av1 expf2 3AV blue red 0.850 2135 750 4.2
m3av2 expf2 3AV blue red 0.875 435 750 4.3

m3sv2a expf5 3SV red orange 2.3 2250 500 4.4
m3sv2b expf5 3SV blue, red orange 2.3 2250 500 4.4
m3sv3a expf5 3SV red orange 2.4→2.5 5350 500 4.5
m3sv3b expf5 3SV red orange 2.4→2.5 5350 500 4.5
m3sv4 expf5 3SV red orange 2.4→2.5 5580 70 4.5
m3sv6 expf6 3SV blue red 2.8 4700 500 4.6
m3sv5 expf6 3SV blue red 3.0 9050 500 4.6
m3sv7 expf6 3SV blue red 3.1 10250 400 4.6

where s is a correlation scale, determined empirically to give the most accurate analysis when the analysis is compared with an181

independent observational dataset. We use both horizontal and vertical weighting functions to set182

µki = W h
kiW

v
ki (5)

In the laboratory experiment, only horizontal velocity observations are available. Therefore balanced increments to the pressure and183

temperature fields are calculated using the geostrophic and hydrostatic approximations (except in the boundary layers, where these184

relations do not apply). The vertical velocity and the temperature and pressure in the boundary layers are updated only by the model.185

Each of the terms above is discussed in more detail in the SI.186

4. Results187

In this section we present a series of assimilations using ACACIA from the three observational datafiles, covering the whole range188

of regimes and rotation rates available. Each assimilation is between 400 and 750 s long, starting at ta = tstart and finishing at tstop.189

The assimilation at tstart uses a 1850 s free-running MORALS run as its background state and observations between tstart − tf and190

tstart + tb as input to ACACIA, returning an analysis at tstart. tf and tb are the lengths of the assimilation window on either side of ta191

(Fig. 6). MORALS then advances this analysis to ta = tstart + ∆t. The MORALS forecast at this new ta becomes the background for192

the next ACACIA assimilation, using observations between (tstart + ∆t)− tf and (tstart + ∆t) + tb to compute the next analysis.193

And so on, until the final analysis at ta = tstop.194

Each assimilation is done using one subset of the observations and verified against another. We measure the accuracy of each analysis195

using the RMS residual error between the analysis and the verifying observations. ForN analysis-verification pairs at a particular time196

and vertical level, the residual error for radial velocity (similarly for vrmse) is197

urmse =

√√√√ 1

W

N∑
n=1

wn
(
uon −Hn[ua

]
)2 (6)

where Hn[ua] is the analysis interpolated to the nth observation point, and uon is the nth point in the verifying observations. The198

residual error is representative of all the analysis-observation pairs at a particular time, but the observations are irregularly distributed199

in space, so we assign each pair a weightwn depending on the local data density (expression derived in the SI), withW the total weight200

over all observations.201

If the assimilated and verifying datasets are independent (which they are assumed to be), then on average the minimum possible202

residual error between analysis and verifying observations is the observation error, 0.0057 cm s−1 . However, reaching this ‘perfect203

analysis’ would probably indicate data overfitting. At the other end of the scale, the residual error associated with a ‘climatological204

analysis’ just using the mean observed velocity everywhere would be the standard deviation of the observations away from their mean,205

and so sets an upper reference point for our residual error diagnostics. This standard deviation is 10–15 times the observational error,206

depending on the datafile and vertical level.207

Table 2 summarises the different assimilations, and Fig. 2 shows the position of each assimilation within its datafile. Young and Read208

(2008b) found a systematic shift of−0.11 rad s−1 between observations and model in the position of the wavenumber 2 / wavenumber 3209

regime transition, and we applied this shift when setting the model’s rotation rate. The assimilations use an optimized set of parameters210

that were determined based on a series of short test assimilations. AC is usually optimized in an empirical sense, where the ‘best’211

parameter values are those which give the most accurate analysis. We measured the accuracy of the analysis in these tests using (a) the212

residual error (Eq. 6), (b) the number of assimilation cycles required for the observations and background to converge, indicated by213

the first minimum in the residual error curve, (c) the real time taken to compute each assimilation, and (d) a visual comparison of the214

analysis and observations, to note any systematic errors. The optimal parameters so obtained are listed in Table 3; details of the tests215

themselves are included in the SI.216
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Parameter expf2 expf5 / expf6

∆t / s 2.5 1.0
tf / s 26 21
tb / s 26 21
shmin / cm 0.21 0.1
shmax / cm 0.42 0.2
svmin / cm 0.5 0.75
svmax / cm 0.75 1.00

Table 3. List of optimal parameters for the assimilations in the regular (expf2) and chaotic (expf5, expf6) flow regimes.

ASSIMILATED VELOCITY FIELD
Time = 9170.00s    Height z = 1.60cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.20cm/s

Number of verifying observations = 133
Assimilation dataset = 1    Verification dataset = 2

(a) m2s1 t = 9170 s, z = 1.6 cm,
Nobs = 133

ASSIMILATED VELOCITY FIELD
Time = 7450.00s    Height z = 12.40cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.19cm/s

Number of verifying observations = 476
Assimilation dataset = 1    Verification dataset = 2

(b) m2s2 t = 7450 s, z = 12.4 cm,
Nobs = 476

Figure 7. Horizontal velocity field analysis (blue, grey in print) and verifying observations (red, black in print) for two cases at different levels in the 2S assimilations.

(a) Radial velocity u (b) Azimuthal velocity v

Figure 8. Azimuthal sections atR = 5.25 cm / z = 9.7 cm at t = 9155 s (final assimilation) in assimilation m2s1. The four lines are the analysis (solid), background
(dashed), both of which are blue in the online version and dark grey in print, observations interpolated to the same azimuthal section (black), and free-running run (red,
light grey in print).

We also ran a free-running MORALS simulation parallel to the sequence of assimilations, starting from the transformed background217

state at t = tstart and free-running afterwards, using the same Ω and ∆T forcing parameters as the assimilation itself. The only218

difference between this and the analysis was that the assimilation step was omitted. Including this free-running simulation for219

comparison, we can see how fast the model and analysis would otherwise diverge, the difference the assimilation step makes to the220

model state, and any systematic differences between model and analysis.221

4.1. 2S assimilations: m2s1 and m2s2222

The first two assimilations tracked the observations over two 750 s segments in the 2S flow regime, where the main aim is to track the223

position of the baroclinic wave.224

Figures 7 and 8 show typical analyses, and are good fits to the verifying observations. The assimilation converges to an optimum225

analysis (i.e. minimum residual error) in less than 25 s. Throughout the assimilations they compare well with the verifying observations,226

with residual error shown in Fig. 9. In both assimilations the accuracy of the analyses decreases from the top to the bottom of the tank,227

presumably because there are more observations at the top.228

In the free-running simulations, the model runs are most accurate at z = 7.0 cm. This is probably because the background229

transformation matches up the model and observations at 7.0 cm before starting the run. The residual error slowly increases over230

time instead of remaining approximately constant (like the analysis residual errors) because the modelled and observed waves drift out231

of phase over time but are not pulled back together by the assimilation.232
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(a) Radial velocity error urmse (b) Azimuthal velocity error vrmse

Figure 9. Analysis (black) and free-running model (red, grey in print) residual error (Eq. 6) at each of the five observation levels over assimilation m2s1. The residual error
for run m2s2 was very similar. The five lines correspond to z = 12.4 cm (dot-dash), 9.7 cm (dot-dot-dot-dash), 7.0 cm (solid), 4.3 cm (dotted), and 1.6 cm (dashed).

Figure 10. Analysis residual error for u in assimilation m2s2 against the number of observations used in each assimilation. The circles are from level 12.4 cm, upwards
triangles are 9.7 cm, downwards triangles are 7.0 cm, diamonds are 4.3 cm, and squares are 1.6 cm. The horizontal dashed line indicates the observational error
0.0057 cm s−1.

The analysis residual error in Fig. 9 never falls to the theoretical minimum set by the observational error, although it gets close. The233

error does decrease as the number of observations increases, however. This suggests there may be an observation number for which234

the residual error matches the observational error. This number can be estimated by plotting the residual error for each analysis over235

a sequence of assimilations against the number of observations in each assimilated dataset. This is shown in Fig. 10 for assimilation236

m2s2, showing that about 500–600 observations would be required for urmse to fall to the minimum.237

4.2. 3AV assimilations: m3av1 and m3av2238

In the 3AV regime the assimilation aims to track both the position of the baroclinic wave and its vacillation over time. Figure 11 shows239

typical results, and again the analyses show a close correspondence between analysis and verifying observations, with residual errors240

similar in magnitude to the 2S case. There is no oscillation in the analysis residual error over the vacillation timescale, but in the241

free-running runs there is a clear oscillation, presumably because the vacillation period in the model and observations do not match242

exactly.243

4.3. 3AV to 2S transition assimilation: m3av2s1244

The final case using datafile expf2 was to assimilate over a regime transition from 3AV to 2S as Ω is reduced from 0.825 to245

0.800 rad s−1. The aim is to assimilate first the abrupt change in Ω at t = 5750 s, followed by the wavenumber change between246

t = 6000 s and 6300 s, and to track the position and vacillation of the original wave as well as its change from a vacillating to non-247

vacillating wave.248

Figure 12 shows a sequence of analyses and azimuthal slices at z = 9.7 cm between t = 5905 s and t = 6405 s. ACACIA performs249

as well in this scenario as it does in the previous cases. This figure also shows the wavenumber transition in the free-running model.250

The transition happens about 100 s before it happens in the analyses, and once it has occurred in the free-running model it is almost251

perfectly in phase with the analysis, but this is coincidental.252

The v residual error is shown in Fig. 13. Like the other assimilations, the analysis residual remains approximately constant253

throughout the assimilation. There is no rise in the residual error as the wavenumber changes during the later part of the assimilation,254

but there is a small jump at the time the rotation rate changes at 5750 s, when observations with the new Ω first enter the assimilation255
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ASSIMILATED VELOCITY FIELD

Time = 2630.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.17cm/s

Number of verifying observations = 414
Assimilation dataset = 1    Verification dataset = 2

(a) t = 2630 s,Nobs = 414 (b) u at t = 2630 s (c) Radial velocity residual error urmse

Figure 11. 3AV results from assimilation m3av1. Left: Horizontal velocity analyses and verifying observations at z = 9.7 cm (colour key as Fig. 7). Middle: Azimuthal
velocity sections through R = 5.25 cm, z = 9.7 cm at t = 2630 s (as Fig. 8). Right: Radial velocity residual error urmse (as Fig. 9). Assimilation m3av2 is
qualitatively similar.

ASSIMILATED VELOCITY FIELD
Time = 5905.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.18cm/s

Number of verifying observations = 414
Assimilation dataset = 1    Verification dataset = 2

(a) t = 5905 s,Nobs = 402

ASSIMILATED VELOCITY FIELD
Time = 6105.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.18cm/s

Number of verifying observations = 391
Assimilation dataset = 1    Verification dataset = 2

(b) t = 6105 s,Nobs = 391

ASSIMILATED VELOCITY FIELD
Time = 6305.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.18cm/s

Number of verifying observations = 427
Assimilation dataset = 1    Verification dataset = 2

(c) t = 6305 s,Nobs = 427

(d) t = 5905 s (e) t = 6105 s (f) t = 6305 s

Figure 12. Top: Horizontal velocity analyses and verifying observations for three analyses spanning the wavenumber transition in assimilation m3av2s1, at z = 9.7 cm,
frames separated by 200 s (colour key as Fig. 7). Bottom: corresponding radial velocity azimuthal sections at R = 5.25 cm (as Fig. 8). The SI contains these two
sequences as animations.

window. This only occurs in v because the immediate effect of changing Ω is a sharp change in the azimuthal velocity in the rotating256

frame of reference, while the radial velocity is continuous in the rotating frame across the drop in Ω. There will be some boundary257

layer effects on the radial velocity from changing Ω, but these are minimal.258

4.4. 3SV assimilations at low rotation rate: m3sv2a, m3sv2b259

In the 3SV regime the aim is to capture the shape vacillation of the baroclinic wave as well as any chaotic dynamics. This second260

condition makes assimilation in the 3SV regime somewhat more difficult than in the 2S and 3AV regimes.261

Figure 14 shows a representative horizontal velocity analysis at the upper level along with azimuthal sections at mid-radius from262

assimilation m3sv2a (Ω = 2.3 rad s−1). As in the previous sections, the analysis generally tracks the verifying observations well.263
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Figure 13. As Fig. 9, but for azimuthal velocity residual error vrmse in assimilation m3av2s1.

ASSIMILATED VELOCITY FIELD
Time = 2750.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.11cm/s

Number of verifying observations = 654
Assimilation dataset = 2    Verification dataset = 3

(a) Horizontal velocity analysis and verifying observa-
tions (Nobs = 654)

(b) Radial velocity u (R = 5.25 cm). (c) Azimuthal velocity v (R = 5.25 cm).

Figure 14. Representative assimilation m3sv2a 3SV horizontal velocity analysis and velocity sections at t = 2750 s, z = 9.7 cm. The line colours and styles are as in
Figs 7 and 8.

(a) Radial velocity error urmse (b) Azimuthal velocity error vrmse

Figure 15. Analysis and free-running simulation residual errors at the two observation levels during assimilation m3sv2a. The solid lines correspond to z = 9.7 cm, and
the dotted lines to 4.3 cm. Colours are as Fig. 9.

Figure 15 shows the residual error for m3sv2a. The error in the free-running simulation (red lines) slowly increases over time,264

primarily because the background state drifts out of phase with the observations (see the azimuthal sections in Fig. 14). The residual265

error is about 50% larger than for regular flow, and there is an oscillation in vrmse with a steady period of 30 s, for which no explanation266

has been found (and was constant for different assimilation parameters).267

Figure 10 suggested that the analysis residual error depends on the number of observations in the assimilated dataset, and that with268

a sufficiently high number of assimilated observations we might get a residual error comparable with observational error. To test this269

we ran assimilation m3sv2b, identical to m3sv2a but using both blue and red subsets for assimilation instead of just red (verification270

used subset orange, as before). Figure 16 shows the change in the residual error between m3sv2a and m3sv2b. Doubling the number271

of assimilated observations gives only a marginal improvement. This suggests that subsets blue and red are not as independent as272

first thought. Some observations remain within the light sheet between subsets and so appear in more than one, so the number of273

independent assimilated observations in m3sv2b is not double that in m3sv2a. Hence it is not possible to improve the accuracy much274
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Figure 16. Radial velocity analysis residual error against the number of observations used in each assimilation, for assimilations m3sv2a and m3sv2b. The assimilated
subset(s) (1-blue and 2-red) and vertical level are indicated in brackets, and the dashed line is the observational error 0.0057 cm s−1.

ASSIMILATED VELOCITY FIELD
Time = 5590.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.13cm/s

Number of verifying observations = 724
Assimilation dataset = 2    Verification dataset = 3

(a) t = 5590 s,Nobs = 724

ASSIMILATED VELOCITY FIELD
Time = 5600.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.13cm/s

Number of verifying observations = 634
Assimilation dataset = 2    Verification dataset = 3

(b) t = 5600 s,Nobs = 634

(c) Radial velocity u at t = 5600 s (z =
9.7 cm)

(d) Azimuthal velocity v at t = 5600 s
(z = 9.7 cm)

Figure 17. Top: Horizontal velocity analyses and verifying observations in assimilation m3sv3a, for two consecutive observation datasets at z = 9.7 cm (colours as
Fig. 7). Bottom: azimuthal sections atR = 5.25 cm / z = 9.7 cm at t = 5600 s (colours as Fig. 8).

by increasing the number of assimilated observations in this way. One could randomly split a single subset into two parts and use half275

for assimilation and half for verification, but we leave this for the future.276

4.5. 3SV assimilations over a rotation rate transition: m3sv3a, m3sv3b, m3sv4277

Using the next set of assimilations we investigated how well ACACIA could assimilate data over an abrupt Ω transition in the278

observational data. These assimilations began at Ω = 2.4 rad s−1 and stepped up to Ω = 2.5 rad s−1 at t = 5600 s (Fig. 2). The279

observations show a short burst of high azimuthal velocity at the transition before the wave settles back down. After the transition280

the wave settles down to almost exactly the same place in the tank, showing that the particles gathered on the bottom of the tank have281

a strong feedback effect on the position of the wave, and do not disperse when the flow temporarily speeds up.282

Figure 17 shows two analyses just before and at the Ω transition in m3sv3a, along with azimuthal sections at the transition. We see283

the effect of the transition on the analysis 10 s before it takes place in the observations (Fig. 17a), as the assimilation window begins to284

include observations from beyond the transition. When Ω changes (Fig. 17b) the observed flow changes over a timescale much shorter285

than both the time between observations and the assimilation window. As a result the increased v enters the window before the flow286
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(a) m3sv3a radial velocity error urmse (b) m3sv4 radial velocity error urmse

(c) m3sv3a azimuthal velocity error vrmse (d) m3sv4 azimuthal velocity error vrmse

Figure 18. Left: Analysis and free-running simulation residual errors at the two observation levels during assimilation m3sv3a. Colours and line styles are as Fig. 15.
Right: As left column but for assimilation m3sv4. ASSIMILATED VELOCITY FIELD

Time = 9550.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.11cm/s

Number of verifying observations = 731
Assimilation dataset = 1    Verification dataset = 2

Figure 19. Representative high-Ω analysis, from m3sv5 at t = 9550 s and z = 9.7 cm, showing the horizontal velocity field (blue, grey in print) and verifying
observations (red, black in print), withNobs = 731.

is forced by the model in a way that produces such a flow dynamically, so the quality of the assimilation is severely degraded. This is287

reflected in the residual error (Fig. 18a,c), with the errors increasing by a factor of six in urmse and ten in vrmse over 10 s.288

To try to improve ACACIA’s performance we re-ran the transition scenario with a reduced assimilation window using tb = tf = 11 s289

(m3sv3b), and then also a reduced time of ∆t = 0.2 s between assimilations (m3sv4). In m3sv3b observations from beyond the290

transition would enter the window at a time closer to the transition itself, but the improvement at the transition was marginal. With the291

reduced time between assimilations in m3sv4 there was still an increased residual error during the transition (Fig. 18b,d), but there was292

a 40% improvement in vrmse over m3sv3a (no improvement in urmse). This improvement is due to there being more iterations using293

observations after the transition before the transition actually occurs.294

4.6. 3SV assimilations at high rotation rate: m3sv5, m3sv6, m3sv7295

These final three assimilations were at the higher end of the available rotation rates, up to 3.1 rad s−1 in m3sv7∗. As Ω increases over296

dataset expf6, vortices begin to be shed westward from the cyclones at the upper level, becoming more and more pronounced as Ω297

increases; the aim here is to assimilate this behaviour accurately.298

Figure 19 shows a representative analysis from one of these assimilations and Fig. 20 the residual error. The analyses are generally299

accurate, even at the highest Ω. The v residual error oscillates substantially, unlike the lower-Ω results, but this is the only substantive300

difference. This may be because the model and observations have slightly different wave drift periods, which will introduce errors into301

the v (less so the u) velocity analyses. The oscillation period is 150–200 s, however, which does not match any known timescale in this302

flow regime.303

∗For these assimilations we returned the parameters to the defaults listed in Table 3.
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(a) m3sv6: urmse (b) m3sv5: urmse (c) m3sv7: urmse

(d) m3sv6: vrmse (e) m3sv5: vrmse (f) m3sv7: vrmse

Figure 20. Radial and azimuthal residual errors in assimilations m3sv6, m3sv5, and m3sv7 (increasing Ω). Line colours and styles are as Fig. 15.

Vortex shedding is reasonably well assimilated by ACACIA, and is shown at the upper level in Fig. 21 for a case in m3sv7. The304

vortices move from the westward edge of the cyclone into the anticyclonic region over a timescale of 100–150 s. In the next section we305

examine these vortices in more detail.306

4.7. Comparisons between chaotic and regular assimilations307

Figure 22 combines the results from all the assimilations to show the distribution of residual errors at the different vertical levels. It308

shows clearly that u error is generally smaller than v error, that the error decreases as the vertical position increases, as expected from309

the dependence on the number of observations with height, and that the assimilations were more accurate in the regular regimes than in310

the chaotic regime. The best analyses came close to the observational error. No analyses approached the variability in the observations311

above 0.06 cm s−1 representative of a ‘climatological analysis’, which is encouraging.312

Figure 23 compares residual errors between regular and chaotic flow as well as within regimes. Clearly the flow regime has the313

largest effect on the values: assimilations in the chaotic regime (3SV) have a consistently higher error than those in regular regimes (2S314

and 3AV). Within a particular regime there is little variation among the different assimilations.315

5. Probing annulus dynamics with the ACACIA analyses316

In the chaotic regime we see vortex shedding from the cyclones at high Ω (Fig. 21), but we don’t see this at low Ω. Is there a mechanism317

that causes vortex shedding at high rotation but not at low rotation? We are only able to assimilate horizontal velocity observations, but318

the assimilation retrieves unobserved quantities such as temperature, which we can use to study this phenomenon more closely.319

Figure 24 shows representative temperature fields at z = 9.7 cm in four cases: regular assimilations m2s1 and m3av2 at 0.775 and320

0.875 rad s−1, and chaotic assimilations m3sv2a and m3sv7 at 2.3 and 3.1 rad s−1. Temperature is retrieved by the assimilation using321

the hydrostatic and geostrophic approximations. There is a clear difference between the temperature structure in the regular and chaotic322

flow regimes. Regular flow contains fronts between low and high temperature regions, but in the chaotic flow regime the cool fluid is323

constrained to a radial tongue or ‘plume’ along the westward side of each cyclone (using the streamfunction to identify the cyclone’s324

position). The streamfunction shows why this occurs. In the chaotic flow near the inner cylinder within the cyclones the main jet325

is distorted so that the streamlines almost fully isolate the cyclone from the inner cylinder. Hence cool fluid can only be channelled326

outwards via the plume, rather than diffusing into the interior of the cyclone. By contrast, in the regular flow the main jet is not distorted327

near the inner cylinder. Hence cool fluid more easily diffuses into the body of the cyclone. The strong jet then isolates the cool region328

from the warm region, maintaining the front.329

We can demonstrate what happens to cool fluid as it is advected outwards by the jet in the chaotic flow using the potential energy330

(EP ) field, where EP = ∆ρ g z with ∆ρ the departure from a reference density. High temperature corresponds to low EP and vice331

versa. In the chaotic flow there is a region of increased EP extending into the anticyclonic region (c.f. Fig. 24d), which is more332

pronounced at the high rotation rates. In the chaotic flow pulses of cool fluid are periodically advected by the jet towards the outer333

cylinder, the pulse being stronger at higher Ω. This modulates the cool tongue described above over a ∼100 s period. We include an334

animation of the m3sv6 EP with the SI showing this phenomenon. When the pulse reaches the outer cylinder it is either carried around335

the cyclone by the flow (e.g. t ≈ 4920 s in the animation) or is smeared out in the azimuthal direction (e.g. t ≈ 5200 s); littleEP seems336

to be carried to the outer cylinder itself.337

Is the jet being forced in different ways by the eddies at the different rotation rates, and can we use this to explain why vortex338

shedding occurs in one case and not the other? We consider two possibilities here that may help us to understand the phenomenon.339
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(a) t = 10 510 s (b) t = 10 520 s (c) t = 10 530 s (d) t = 10 540 s (e) t = 10 550 s

(f) t = 10 560 s (g) t = 10 570 s (h) t = 10 580 s (i) t = 10 590 s (j) t = 10 600 s

(k) t = 10 610 s (l) t = 10 620 s (m) t = 10 630 s (n) t = 10 640 s (o) t = 10 650 s

Figure 21. Sequence of analyses at z = 9.7 cm over 140 s in assimilation m3sv7, showing the development of a vortex and its shedding from the westward edge of a
cyclone in the upper right quadrant of the annulus. The analysis is shown as horizontal stream function contours, with the observed velocity vectors superimposed (colour
online only).

(a) Datafile expf2: 2S and 3AV (b) Datafiles expf5 and expf6: 3SV

Figure 22. Distribution of u (black) and v (red, grey in print) residual error for all analyses at each vertical level. The mean (dot) and one standard deviation (line) of the
residual error over all the analyses at each vertical level are plotted. The vertical dashed line represents the observational error 0.0057 cm s−1.

5.1. E-vectors340

E-vectors identify regions where barotropic eddies stimulate both cyclonic and anticyclonic cyclogenesis. James (1994, Eq. 7.20b)341

defines the E-vectors for atmospheric flow; redefining them in the coordinate system used by MORALS gives342

E = (ER, Eφ) = (−u′v′, u′2 − v′2) (7)

where u and v are the assimilated radial and azimuthal velocities, primes denote eddy quantities with respect to the time mean over343

the whole assimilation sequence, and the bar denotes a barotropic (vertically-averaged) time mean over the whole sequence. A whole344
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Figure 23. Comparison of radial velocity residual errors at z = 9.7 cm for all assimilations. In the online version, red, green, and yellow lines are from 3SV assimilations,
and blue and black lines are from 2S and 3AV. The colour key is shown on the plot, along with the observational error as a dashed line. The Ω-transition part of m3sv3a
has been omitted.

(a) m2s1, Ω = 0.775 rad s−1 (b) m3av2, Ω = 0.875 rad s−1 (c) m3sv2a, Ω = 2.3 rad s−1 (d) m3sv7, Ω = 3.1 rad s−1

Figure 24. Representative assimilated temperature fields at z = 9.7 cm for regular (left two) and chaotic flow (right two). Temperatures are relative to 22 ◦C. Assimilated
horizontal streamfunction contours are plotted on top. Note the colour scale is slightly different for the chaotic and regular cases (colour online only).

assimilation sequence is hence represented by a single horizontal section. We can calculate the barotropic E-vectors only because345

the assimilation fills in the horizontal velocity field at unobserved heights. James (1994, Fig. 7.15) shows that for E-vectors pointing346

towards the east (i.e. in the positive azimuthal direction in the annulus), there is anticyclonic cyclogenesis southward of the divergent347

region (i.e. nearer the outer cylinder), cyclonic cyclogenesis southward of the convergent region, and vice versa northward of these348

regions.349

Figure 25 shows the E-vectors and their divergence ∇ ·E for three chaotic assimilations: m3sv2a, m3sv6, and m3sv7. There is a350

clear trend in the strength of the divergence and convergence of the E-vectors as rotation increases. The divergent region within the351

anticyclone becomes larger and stronger, as does the convergent region within the cyclone. This acts to reinforce the main cyclone352

nearer the outer cylinder, but weaken the part of the cyclone that extends into the anticyclonic region near the outer cylinder. (This353

extension is not clear in the barotropic time-averaged streamfunction, but see Fig. 24c for example; at z = 9.7 cm the extended region354

becomes more pronounced as rotation increases). This weakening of the cyclonic region extending into the anticyclonic region may355

then cause vortices to break off into the anticyclonic region.356

5.2. Rossby wave stability357

The onset of small-scale cyclic or chaotic time-dependence in the large-scale wave could represent a secondary instability, akin to358

the instability of the ‘classical’ Rossby wave studied by Hoskins (1973) and Gill (1974). This secondary instability can take either a359

barotropic or baroclinic form, depending upon conditions (see Grotjahn (1984) or Read (1993) for reviews).360

Deininger (1982) showed that the nonlinear development of barotropic instability of a (barotropic) Rossby wave could lead to a361

periodic exchange of energy between the main wave and a perturbation, producing a phenomenology akin to ‘structural vacillation’.362

However, our flows do not appear to violate the barotropic stability criterion set out by Bell (1989) (for the quasi-geostrophic363

case, at least). He found r2(K2 − 1) ≤ 3 to be sufficient for wave stability, where K is the wavenumber and r = 2L/Lx is the364

horizontal aspect ratio with L the lateral length scale and Lx the zonal length scale. For an annulus of cylinder radii a and b we have365

r = (2b− 2a)/(πb + πa), so in our case r2(K2 − 1) ≈ 0.9, which is sufficient for stability.366

Kim (1978) suggested that a baroclinic Rossby wave may be unstable to baroclinic secondary instabilities if the large scale367

wavelength L is much larger than the deformation radius LD = NH/f , where N is the buoyancy frequency, H is a vertical length368

scale, and f is the Coriolis parameter. It is reasonable to speculate that nonlinear development of such an instability could lead to cyclic369

vacillations, much as for barotropic instabilities.370

Our simulations suggest that Kim’s criterion for baroclinic secondary instabilities is satisfied. The horizontal wavelength for371

wavenumber-3 flow in our annulus is about 11 cm. For assimilation m3sv7 a typical buoyancy frequency N = ((g/ρ0)∂ρ/∂z)1/2372

is about 0.2 s−1, which gives a deformation radius of LD ≈ 0.5 cm using f = 2Ω and the annulus depth as a vertical length scale.373

Note that calculating N requires assimilation in order to retrieve ∂ρ/∂z, which is a function of temperature. Hence L� LD , with374
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(a) m3sv2a, Ω = 2.3 rad s−1 (b) m3sv6, Ω = 2.8 rad s−1

(c) m3sv7, Ω = 3.1 rad s−1

Figure 25. E-vectors for chaotic flow at low, medium, and high rotation rates. Each plot shows a segment of the annulus; the pattern is qualitatively similar for the other two
waves. The black contour lines show the assimilated barotropic time-averaged horizontal streamfunction (contours below the middle of the range are dotted), and the grey
vectors are the barotropic time-averaged E-vectors. The shading shows the E-vector divergence: black is up to −5 × 10−4 cm s−2, grey is between −5 × 10−4 cm s−2

and +5 × 10−4 cm s−2, and white is above +5 × 10−4 cm s−2. The colours, vectors, and contours use the same scale for each plot.

increasing supercriticality as rotation rate increases because LD ∝ 1/Ω. Intriguingly, the horizontal scale of the vortices generated at375

high rotation rates (e.g. in Fig. 21) is similar to LD .376

This indicates a plausible interpretation for the eddy shedding observed in our assimilations. The fact that the small-scale eddies377

occur close to the outer cylinder, where thermal gradients and fronts are strongly evident, is consistent with this interpretation.378

6. Conclusions379

In this paper we have developed a method for data assimilation in the rotating annulus experiment using analysis correction (Lorenc380

et al. 1991). We used the algorithm, ACACIA, to assimilate laboratory data into a rotating annulus model to produce sequences of381

analyses in steady and amplitude vacillating regular flow regimes, and in a structurally vacillating chaotic flow regime. While this was382

not the first study to assimilate data successfully into a rotating annulus simulation, it was the first to examine specific flow regimes,383

and the first to use irregularly-distributed observations — a situation more realistic for operational meteorology.384

Using an optimal set of parameters determined by a series of test assimilations, we demonstrated that ACACIA combines model and385

experimental data accurately in the rotating annulus context. In regular flow regimes, residual errors were between 1.5 and three times386

the observational error for radial velocity, and between three and seven times for azimuthal velocity, with error generally decreasing387

towards the top of the tank (Fig. 22). In chaotic flow the residual errors were generally higher, but still only 3–7 times the observational388

error, depending on the vertical level and the particular velocity component. All residual errors were significantly better than the 10–15389

times observational error that would result from an analysis containing only the mean observed velocities. There were no statistically390

significant correlations between residual error and Ω.391

Assimilation across a wavenumber transition between 3AV and 2S proved to be as accurate as assimilation without such a transition.392

In the chaotic regime the algorithm also accurately propagated information from data-rich to data-poor areas. Assimilating over a393

rotation rate transition was not as accurate, but we were able to reduce the error significantly by tuning the assimilation parameters.394

We also used the results from the assimilations to study the dynamics of the annulus experiment in a way that would not be possible395

without the assimilation. The temperature field was used to show that pulses of cool fluid are advected by the eastward jet into the region396

close to the outer cylinder, where they are smeared out in the azimuthal direction. The assimilation fills in the horizontal velocity field at397

unobserved heights and this allowed us to examine the effect of the eddies on the mean flow by calculating the barotropic E-vectors. The398

E-vectors indicate that the mean flow is weakened by the action of eddies, which may go some way towards explaining why vortices399

are shed at the highest rotation rates but not at lower rotation. Rossby wave stability theory suggests that the underlying instability400

leading to vortex shedding may itself be baroclinic in character.401
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It is not possible to compare our results directly with the analyses produced by Ravela et al. (2010), because they only compared their402

analyses with the observations used for assimilation (in-sample error), rather than independent observations (out-of-sample error)†. A403

comparison of the in-sample error is possible, however. Their analyses have an in-sample residual velocity error about 1.25 times404

the observational error (their Fig. 10). In this work we obtained similar numbers; for u the in-sample error is one to two times the405

observational error, and it is 1.5 to three times observational error for v. They estimated the maximum speeds in their observations to406

be about 2 cm s−1, and their analyses had a residual velocity error around 0.15 cm s−1 (their Fig. 10), which is about 6% of the largest407

observed velocities. By way of comparison (although note that the two assimilation methods are different so a direct comparison is not408

possible), our assimilations have residual velocity magnitude error around 0.015–0.040 cm s−1, which is 4–10% of a typical observed409

maximum velocity of 0.4 cm s−1. Our method is 4–5 times slower but only uses one processor instead of four. The limiting step is410

to calculate the time-dependent data density, which would scale well using a multi-processor algorithm, so this could certainly be411

improved.412

We aimed to demonstrate analysis correction as an example of a relatively simple meteorological technique that could be applied413

under laboratory conditions. In operational practice analysis correction has been superseded by newer methods, but this demonstration414

lays the foundations for a framework using the annulus as a tool for testing newer methods under development.415

Newer methods that might benefit from study using the annulus include the variational methods 3D-Var (Lorenc et al. 2000), 4D-Var416

(Rawlins et al. 2007), and statistical 4D-Var (Lorenc and Payne 2007). The 4D- methods would require a tangent linear and adjoint417

model for MORALS, which we do not currently have, but we understand that one may now be available‡. The ensemble Kalman418

filter (EnKF) (Evensen 1994), particle filters (van Leeuwen 2010), and gradient descent (Stemler and Judd 2009) are other methods of419

interest. We have begun some work on gradient descent, which will be reported elsewhere. Zhang and Snyder (2007) list a number of420

challenges which (at that time) implementation of the EnKF had not yet overcome, and some of these could be usefully addressed in421

the context of the annulus. Model error and bias are major challenges for the EnKF because the model is used to propagate the error422

covariances forward in time. It might be fruitful to study this in the annulus, where specific sources of model error might be more easily423

identified than in atmospheric models. Ravela et al. (2010) use the EnKF in their annulus assimilation work, so their method might be424

a good place to start.425

With these newer methods several stricter tests of the method would also be interesting. For example, we could turn off the426

background transform step at the start of the assimilation and see how long it takes the assimilation to push the model and observed427

waves into phase. Similarly, one could use an initial background state with a different dominant wave to the observations; how long does428

the assimilation take to converge when a wavenumber transition is required? We could also test the assimilation’s ability to produce429

dynamically coherent structures in regions with no observations, by assimilating observations from only one part of the tank, and then430

verifying against the observations that were omitted. For verification, concurrent temperature measurements would be ideal, as these431

test both the assimilation itself and the ability of the model to recover non-observed variables, but these cannot be taken using the432

current experimental apparatus.433

The setup bears some resemblance to Observing System Simulation Experiments (Arnold and Dey 1986, for example), which use434

a simulation combined with a model of observational error to generate artificial observations. These are then used to evaluate the435

performance of new proposed observation networks for NWP, for example, or to evaluate data assimilation systems. Here we have only436

used real data but it would certainly be possible to use simulated MORALS data in this way for experiments comparing assimilation437

systems, or to investigate the effects of including or omitting certain types of observation. Indeed, we have already used this ‘perfect438

model’ paradigm with MORALS in work involving breeding vectors (Young and Read 2008a).439

Methods like the EnKF would also allow us eventually to cast the comparison of analyses with observations in a more robust440

statistical framework. Because the background error covariance is not updated with the analysis cycle, the current analyses represent441

means of distributions but the comparison is with a single realisation of the possible true states of the system. It would be better to442

compare the mean of the analysis distribution with the mean of the distribution of possible observed states, or ideally the comparison443

would be between the distribution of possible analysis states and the distribution of possible observed states. The distribution of analysis444

states could be obtained using the EnKF, but obtaining the observed distribution would require considerable laboratory time.445
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