
Data assimilation in the laboratory using a rotating annulus
experiment

R. M. B. Young and P. L. Read

Supporting Information

Contents

1 Full MORALS equations 1

2 The analysis correction method 2

3 ACACIA — technical details 3

4 Observations - some technical points 10
4.1 ∆T in each datafile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.2 Data pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
4.3 Estimate of observational error . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.4 Weighting for verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Optimizing the assimilation algorithm 14
5.1 Regular flow (datafile expf2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.2 Chaotic flow (datafiles expf5 and expf6) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Analysis increments for various assimilations 17

7 Residual error dependence on Ω — significance test 18

1 Full MORALS equations

The equations solved are the continuity, heat, and Navier-Stokes equations for an incompressible fluid:

∇ · u = 0 (1)

∂T

∂t
+ u · ∇T = ∇ · (κ∇T ) (2)

∂u

∂t
+ u · ∇u + 2Ω× u− (Ω2RR̂− gẑ)

∆ρ

ρ0
+∇Π = F (3)

T is relative to TR = 22 ◦C, and Π is relative to a reference pressure Π0(R, z) = 1
2Ω2R2 + g(d− z). Here F

is the viscous term, but is more complicated than the standard ν∇2u because it allows spatial variations of
the viscosity as well; see Farnell and Plumb (1976, Eqs 2.1–2.3, 2.6) for the full expression. These equations
are closed by an equation of state for density

ρ(T ) = ρ0(1 + ρ1T + ρ2T
2) (4)

such that ∆ρ = ρ− ρ0, and two ‘constitutive’ relations for kinematic viscosity

ν(T ) = ν0(1 + ν1T + ν2T
2) (5)

and thermal diffusivity
κ(T ) = κ0(1 + κ1T + κ2T

2) (6)

The values used are
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ρ0 = 1.043 g cm−3 ν0 = 1.620× 10−2 cm2 s−1 κ0 = 1.290× 10−3 cm2 s−1

ρ1 = -3.070× 10−4 degC−1 ν1 = -2.790× 10−2 degC−1 κ1 = 2.330× 10−3 degC−1

ρ2 = -7.830× 10−6 degC−2 ν2 = 6.730× 10−4 degC−2 κ2 = 0.000× 10−3 degC−2

On all boundaries u = 0 and n̂ · ∇Π = 0, on the top and bottom boundaries n̂ · ∇T = 0 (insulating), and on
the inner and outer cylinders T = Ta − TR and T = Tb − TR respectively (conducting).

The model has 184,320 grid points (24 × 64 × 24 × 5), but the dimensionality of the model state space
(the number of independent variables) is only 121,088. This is because (1) the Π field is diagnostic, and (2)
there are a number of grid points on and outside the boundaries whose values are fixed by the boundary
conditions. The Arakawa-C grid includes some points outside the boundary of the fluid.

2 The analysis correction method

We give a general outline of the analysis correction (AC) method below; full details can be found in Lorenc
et al. (1991, hereafter L91). We use the standardised notation for data assimilation compiled by Ide et al.
(1997) throughout, including where it conflicts with L91. (We made the following changes to the L91
notation: c→ d, K → H, K→ H, O→ R, and ∆x→ δx.)

The optimal analysis xa is a vector representing the best estimate of the true state of the system at time
ta. In MORALS the full system state, and hence the analysis, has dimension 5NRNφNz. This consists of
five model fields ua, va, wa, Ta, and Πa, each with dimension Nx = NRNφNz, where NR, Nφ, and Nz are
the number of model grid points in R, φ, and z.

In AC, as in most other formulations of data assimilation, the analysis minimises a cost function based
on the errors in the different sources of information contributing to it. In AC the cost function is a trade-off
in an RMS sense between the background state xb [length Nx] and the observations yo [Ny]. The optimal
analysis minimises

J = [yo −H(x)]
∗

(R + F)
−1

[yo −H(x)] +
(
xb − x

)∗
B−1

(
xb − x

)
(7)

with respect to x. B is the background error covariance [Nx ×Nx], R is the observational error covariance
[Ny×Ny], H is an interpolation operator mapping the model state x to the observation points, and F is the
error covariance associated with H [Ny×Ny]. This equation is solved in an iterative sense using a method of
steepest descent, and making a number of approximations (L91, p.65) we obtain the successive corrections
algorithm:

x[n+ 1] = x[n] + QW {yo −H(x[n])} (8)

W = BH∗ (R + F)
−1

(9)

where W [Nx ×Ny] is a matrix of weights depending on the distance between observations and grid points,
Q is a matrix of normalization factors [Nx ×Nx], and H is a matrix of partial derivatives of H. Note that,
in general, H is a nonlinear function, and that H is a function of xb.

This method takes a first guess, compares it with the observed values at the observation points, and maps
the difference between the two onto the model grid using various weighting functions. The observations used
in each assimilation are taken from a window stretching forward in time by tb and backwards in time by tf

from the analysis time, and each observation’s contribution is weighted depending on how far the observation
is from each grid point, and how close it is in time to the analysis time. Equation (8) does not distinguish
in its weighting between observations in different directions, however, but only by distance from the grid
point. Analysis correction improves this by replacing Q with a matrix Q̃ evaluated at the observation points
[Ny × Ny], which accounts for the local observation density. The modified form, which the Met Office AC
scheme used (L91, Eq. 3.9), is

x[n+ 1] = x[n] + WQ̃ {yo −H(x[n])} (10)

Q̃ = (HW + I)
−1

(11)
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Each run of ACACIA computes a single iteration step, so the form we use is

xa = xb + WQ̃
{
yo −H(xb)

}
(12)

The process of updating and repeated insertion nudges the analysis towards the optimal analysis. L91
(pp. 84–85) derive the gain matrix WQ̃ [Nx ×Ny] by combining Eqs (9) and (11):

WQ̃ = BH∗ (HBH∗ + R + F)
−1

(13)

which can be approximated in component form by (L91, Eqs A1.9 and 3.21)

[WQ̃]ki =
µki

ε2i + (1 + ε2i )
1/2Di

≡ µkiQ̃i (14)

Di ≡ Hi

∑
j

µjRj(δtj)(1 + ε2j )
−1/2

 (15)

by the use of various approximations (L91, pp. 84) and a diagonalising approximation to the inverse term
(Bratseth, 1986, Eqs 15a, 16, 18).

In this expression, µki represents a spatial weighting function between model grid point k and observation
i, Di is the time-dependent data density at observation i (the term in square brackets is the equivalent at
the model grid points, L91, Eq. 3.21), µj represents the weighting at all grid points affected by observation
j, Rj(δtj) is the temporal weighting function between observation and analysis time, Hi interpolates from
the model grid to observation i, and

ε2i =
σ2
ii + f2ii
b2ii

(16)

is the ratio of error variances for observation i, where σ2
ii is the observational error covariance (from R),

f2ii is the interpolation error covariance (from F), and b2ii is the background error covariance interpolated
to observation i (from B). AC approximates each of these error covariance matrices by its diagonal, which
simplifies the expressions considerably. Note that the expression forDi is slightly different from the expression
derived by L91 in their Appendix 1. We use this form here because the sum is over all the observations in
the assimilation window, and hence time weighting is necessary as otherwise all the observations are treated
as if they are valid at the analysis time.

3 ACACIA — technical details

The aim in ACACIA is to use a method as close as possible to AC as described by L91. Figure S1 shows a
flowchart of the whole procedure. The following sections describe each component of AC as applied to the
rotating annulus case using ACACIA and MORALS.

Increments to the horizontal velocity field

Only horizontal velocity fields u and v are available as observations, so first ACACIA calculates the incre-
ments to these fields, and then dynamically balanced increments are added to the other fields (see below).
Equation (12) is expressed in incremental form for grid point k by (L91, Eq. 3.18)

δxk = λ
∑
i

µkiQ̃iR
2
i (δti)di (17)

where the first two terms inside the sum come from Eq. (14). R2
i (δti) represents the weighting of each

observation in time (see below), and di is the increment at observation i:

di = yi −Hi(x
b) (18)
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Figure S1: Flowchart showing the algorithm for computing a series of analyses with ACACIA.

For grid point k, the sum in Eq. (17) is over all observations i within the horizontal and vertical domains
defined below in the section on weighting functions. δxk represents either radial velocity δuk or azimuthal
velocity δvk, which are calculated separately. These increments define the horizontal velocity analysis ua =
ub + δu and va = vb + δv.

Relaxation coefficient λ

The term outside the sum in Eq. (17) is the relaxation coefficient λ, a scalar setting the fraction of the
calculated increment to add to the background fields ub and vb. It is related to the nudging coefficient G
(Hoke and Anthes, 1976) by

λ =
G∆t

1 +G∆t
(19)

and performs a similar function, nudging the state towards the optimal analysis over a sequence of assim-
ilations. ∆t is the time between assimilations, and we set G to 4.45 times the Coriolis parameter. The
relaxation coefficient and nudging implicitly perform a similar rôle to initialisation in other assimilation
techniques.

We set G as follows: L91 state that the timescale G−1 should not be small compared with f−1, where f is
the Coriolis parameter. Let ε = |f/G| and suppose this ratio is the same for the atmosphere and the annulus.
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In the Earth’s atmosphere f = 1.45× 10−4 sinφ, where φ is latitude. Using the values of G in Appendix 2 of
L91, we calculate ε for the Earth in three different cases: for the northern hemisphere ε ∼ 0.171 (φ ∼ 45◦),
for the tropics ε ∼ 0.081 (φ ∼ 10◦), and for the southern hemisphere ε ∼ 0.278 (φ ∼ −45◦). The average is
ε ∼ 0.225 or 1/ε = 4.45, so G = 4.45f .

Using f = 2Ω, for the values of Ω and ∆t we use, λ varies between 0.94 and 0.96. G is substantially larger
in the annulus than the equivalent value for planetary atmospheres (10−4–10−3 s−1) because the rotation
rate is four orders of magnitude larger in the laboratory.

Background xb and its error covariance B

The background state xb represents the a priori estimate of the system state, and the background error
covariance B is the estimate of its error. A MORALS simulation generates the background xb. For the first
assimilation in a sequence, we ran MORALS for 1850 s, long enough for a coherent wave structure to appear
and for any transient behaviour to decay, and used the final state in this run as the background state. For
subsequent assimilations the background was the end point of a short range MORALS run started from the
previous analysis.

In AC B is approximated by a diagonal matrix b2ii, where b2ii is the error variance at observation point
i, interpolated from the model grid. We estimated the error on the model grid using a simple measure
of variability in the MORALS background field at each radius and height. B was not updated between
assimilations, as in general the observational error is much smaller. For radial velocity

Bu(R, z) =
1

NφNt

∑
φ,t

[
ub(R,φ, z, t)− 〈ub(R, z)〉

]2
(20)

and similarly for v, where Nt is the number of data points in time in the background run. In a sense this
is a measure of ‘climate’ variability, although the amount of data used is much shorter than would normally
be used to calculate a climate distribution. The rotational symmetry of the annulus means this quantity is
a function of R and z only.

After the assimilations were completed another method for estimating B was suggested to us. After
the first assimilation step the background is closer to the truth than the initial background state was, so
except in the first assimilation B will be an overestimate. Instead of using a fixed covariance based on a
free-running simulation, the alternative method would use the one-step forecast error (the difference between
the background state and the assimilated observations) as an estimate of B. To confirm whether using this
method would mean B had more of an effect on the assimilation, we calculated the ratio of one-step forecast
error variance to observational error variance for each analysis. We found the original method that we did
use suitable in almost all cases, as this ratio varied between 2:1 and 70:1 for regular flow and between 10:1
and 40:1 for chaotic flow, i.e. background error was always larger than observational error. The ratio was
less than 5:1 only at a few times in the upper level radial velocity of the regular flow assimilations. In these
cases B would have had an appreciable effect on the analysis increment and so the one-step error would have
been a better estimate of that quantity.

Observations yo and their error covariance R

The observations to be used for each assimilation are represented by a vector yo of length Ny. yo represents
either radial velocity uo or azimuthal velocity vo, and contains observations for the whole assimilation
window (ta − tf to ta + tb).

Like B, AC assumes R [Ny ×Ny] is diagonal. Section 4.3 below contains an estimate of the error from
first principles, and concludes that the error distribution for each observation is approximately the same,
with the following error covariance:

[R]ii ≡ σ2
ii = (0.0057 cm s−1)2 (21)
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Background field transformation

The initial background u and v fields from the free-running MORALS simulation are generally out of phase
with the observations at tstart. So, before calculating the first analysis increment in the sequence, ACACIA
transforms xb in an azimuthal direction to align its main baroclinic wave with the observations at that time.
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(b) After transform

Figure S2: Radial velocity as a function of azimuth for observations interpolated to the mid-R / mid-z line
(thick), and the background field (thin). In this example the background field was transformed by +5.77 rad
to match up with the observations.

To calculate the transform angle the radial velocity is plotted at mid-radius (R1/2) and observation level
zobs(t

a) as a function of azimuth for both background and observed values. To calculate these azimuthal
sections, ACACIA first interpolates the background radial velocity to the observation level using linear
interpolation (there is a radial velocity grid point at mid-radius). Second, it estimates the observed radial
velocity field at each mid-radius azimuthal grid point by taking a weighted mean over nearby observations:

uoR1/2,φ,zobs
'

∑
rji≤rmax

uoi /r
2
ji∑

rji≤rmax

1/r2ji
(22)

where rji is the horizontal distance between observation uoi and the point (R1/2, φ, zobs). The sum is over
all the observations within rmax, a fixed multiple of the maximum distance between any grid point and its
nearest observation. We found the results were not sensitive to this multiple, and used 1.1.

Figure S2a shows two such azimuthal sections found using this method. A spatial Fourier transform
(Press et al., 1992, p. 501) then extracts the phase of the dominant wave in both sections. Suppose the

phase difference is ∆θt = θu
o − θub

, where θu
o

and θu
b

are the phases in the observed and background fields
respectively. ACACIA then transforms all five background fields by +∆θt to line up with the observations
(Fig. S2b). The error associated with this transform is small compared with B, and B itself is not transformed
because it is azimuthally symmetric.
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Interpolation operator H and its error covariance F

ACACIA uses the interpolation operator H in a number of places to map a field from the model grid to
the observation points. As the error in the interpolation is generally smaller than other sources of error, a
simple 3D linear interpolation is sufficient. Cheney and Kincaid (2003, pp. 172–174) show that the error in
a value obtained by linear interpolation has standard deviation

h =
1

8
(xb − xa)2 max

x∈[xa,xb]
g′′(x) (23)

where g(x) is the function to be approximated by interpolation, and [xa, xb] is the interval over which the
interpolation is done. Assuming the second derivative at (xa + xb)/2 is representative of the whole interval,
we can estimate the error in the interpolation over [xa, xb] as

h[xa,xb] '
xb − xa

8

[
g(xb+1)− g(xa)

xb+1 − xa
− g(xb)− g(xa−1)

xb − xa−1

]
(24)

Applying this to the linear interpolation operator H and combining errors in quadrature (Squires, 2001, p. 29)
in each step of the linear interpolation in three dimensions, we obtain the interpolation error covariance Fii
at each observation point i.

Weighting functions

The influence the ith observation has on the analysis at a particular model grid point depends on (1) the
time between the observation time toi and the analysis time ta, and (2) the distance between the observation
and the grid point.

For analysis time ta, observation time toi , window length forwards in time tf and backwards in time tb

relative to each observation, the weighting for observation i is

Ri(δti) =

 1− δti/tb 0 ≤ δti ≤ tb
1 + δti/t

f −tf ≤ δti < 0
0 otherwise

(25)

where δti = toi − ta. From the point of view of the assimilation, the observations used are in a window
running from ta − tf to ta + tb. The weighting in space due to observation i at grid point k is

µki = W h
kiW

v
ki (26)

which is the product of horizontal and vertical weighting functions. We use the weighting formula from L91:

W h
ki =

(
1 +

rki
sh

)
exp

(
−rki
sh

)
(27)

and similarly for the vertical, W v
ki. This function is shown in Fig. S3. rki is the horizontal distance between

grid point k and observation i, and sh is the horizontal correlation scale. Equation (27) is unbounded, so
a maximum radius of influence is imposed to save computational expense at rki = αsh. The correlation
scale defines the shape of the weighting function and its area of influence, and is optimized empirically
(Sect. 5). For each observation its value depends on the time difference between observation and analysis.
For maximum and minimum correlation scales shmax and shmin (horizontal) and svmax and svmin (vertical), the
horizontal correlation scale is

sh(δti) =

 shmin + δti(s
h
max − shmin)/tb 0 ≤ δti ≤ tb

shmin − δti(shmax − shmin)/tf −tf ≤ δti < 0
N/A otherwise

(28)

and similarly for the vertical.
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Figure S3: Spatial weighting using Eq. (27) as a function of observation to grid point distance with a
correlation scale of one and α = 3.5.

Maximum influence radius α

By setting α < ∞ in the sum over observations when calculating the u and v analysis increments, we omit
some fraction of the total ‘influence’ of the observations on the analysis increment, because some observations
are left out that would have had nonzero weight. We can estimate the fraction of influence omitted as a
function of α assuming constant s and observation density. By integrating Eq. (27) over the area enclosed
by r ≤ αs (Iα) and comparing it with the integral over the area enclosed by r ≤ ∞ (I∞) we obtain the
fraction of influence lost:

Lα =
I∞ − Iα
I∞

=

(
1 + α+

α2

3

)
e−α (29)

The value eventually chosen for the assimilations, α = 5.92, represents a 5% loss.

Balanced increments for the w, T, and Π fields

Increments to the other three model fields cannot be calculated directly from observational data, because no
such data are available. ACACIA must instead use relationships between the model variables to calculate
these increments and ensure consistency with the model dynamics.

In the interior of the fluid, the dominant balances are geostrophic (in the horizontal) and hydrostatic (in
the vertical):

∂Π

∂R
≈ fv ∂Π

∂φ
≈ −fRu ∂Π

∂z
≈ −g∆ρ

ρ0
(30)

We decided not to calculate balanced increments in temperature and pressure within the boundary layers,
because the dominant balance there is significantly more complicated due to the inclusion of diffusion terms.
ACACIA instead sets the temperature and pressure increments to zero within these layers, which extend
about 1.25 mm into the fluid for typical values of ∆T and Ω. The Ekman layer thickness used to set the
cutoff point for the top and bottom boundary layers is BLEk = d

√
Ek, where Ek = ν0/(Ωd

2) is the Ekman
number, and the Stewartson / Pohlhausen layer thickness used to set the cutoff point for the inner and outer

cylinder boundary layers is BLS = min
[
(b− a)Ek1/3, d/S1/4

]
, where S = |ρ1g(Tb − Ta)| d3/(ν0κ0) is the

Rayleigh number.
Using the geostrophic balance relations for u and v and expanding in small increments, we obtain a

Poisson equation for the pressure balance increment δΠ at each vertical level in the model:[
1

R

∂

∂R

(
R
∂

∂R

)
+

1

R2

∂2

∂φ2

]
δΠ = 2Ω

[
δv

R
+
∂δv

∂R
− 1

R

∂δu

∂φ

]
(31)
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This equation is A δΠ = b in matrix form, and ACACIA solves this using the method of biconjugate
gradients with A> as a preconditioner matrix on both sides (Press et al., 1992, p. 79), giving the pressure
increment δΠ and hence the pressure analysis Πa = Πb + δΠ. The integration constant is set so that the
solution in the interior of the fluid matches up with the increment in the boundary layer (i.e. zero). If a
particular level does not converge to a solution, ACACIA uses a linear interpolation between the nearest
levels that do converge.

Using the hydrostatic approximation and the pressure increment δΠ we then obtain a quadratic equation
for the temperature increment δT and hence the temperature analysis Ta = Tb + δT. The full solution of
this equation introduces rounding errors by subtracting a very small number from a very large one in the
term under the square root, so we use the following approximation for the temperature increment at each
grid point k:

δTk = − 1

g
[
ρ1 + 2ρ2T b

k

] ∂δΠ
∂z

∣∣∣∣
k

(32)

This is used as long as [
ρ1
2ρ2

+ T b
k

]2
� 1

gρ2

∂δΠ

∂z

∣∣∣∣
k

(33)

which is satisfied almost everywhere, otherwise the full quadratic equation is used.
Appendix D of Young (2009) contains a full derivation of these balance conditions and the finite-difference

form of the Poisson equation used to solve Eq. (31).
We attempted to calculate a balanced vertical velocity increment δw using the continuity equation and

the heat transfer equation, but both of these approaches proved inadequate. First, the continuity equation
must be integrated across the fluid while satisfying zero velocity on both boundaries, which is not possible

in practice. Second, the heat equation formulation includes a term
[
∂Tb/∂z

]−1
, which is sometimes small,

making δw sensitive to noise in δu and δv. Instead, we set δw to zero everywhere, so wa = wb. This means
the vertical velocity is updated only by the model, but this did not seem to cause any problems.

Algorithm procedure

The procedure for computing the analysis xa using ACACIA is as follows:

Read in command line parameters. • Read in parameters from a file. • Define the relaxation coefficient λ. •
Read in the background field xb and its error covariance B. • Calculate the position of the boundary layers.
• Read in velocity observations uo and vo within the assimilation window [ta − tf , ta + tb], and convert
them to plane polar coordinates. • Calculate the observational error covariance matrix R. • Calculate
the weighting of each observation in time Ri(δti). • If required, transform the background field to line up
with the observations. • Plot the background fields and observations. • Interpolate the background error
covariance B to the observation points. • Save the parameters, grids, background, and observations to disk.
• Calculate the correlation scales for each observation. • Interpolate the background field to the observation
points, H(xb). • Calculate the interpolation operator error covariance F. • Calculate the increments at
the observation points, d. • Calculate the ratio of error variances ε2i at the observation points. • Calculate
the data density on the model grid using contributions from each observation calculated with the temporal
and spatial weighting functions. • Interpolate the data density to the observation points to get Di. •
Calculate the approximation to Q̃i using the data density Di. • For each observation, add its contribution
to the increments δu and δv. • Calculate the balanced pressure increment δΠ. • Calculate the balanced
temperature increment δT. • Increment the velocities to get ua and va and impose the boundary conditions.
• Increment the pressure field to get Πa and impose the boundary conditions. • Increment the temperature
field to get Ta and impose the boundary conditions. • Plot the analysis increments, analysis fields, analysis
divergence and vorticity fields, and vector velocity field of observations and analysis at the observation level.
• Output the analysis increments δu, δv, δT, and δΠ as a perturbation for MORALS.
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Comparison of algorithm parameters with other AC uses

Table 1 lists typical parameter values used in previous applications of analysis correction and approximate
equivalent values for the annulus in the regular flow assimilations.

In both these previous cases the model advances by just one time step between assimilations. For the
annulus, however, this is prohibitively expensive because there are typically several hundred model time
steps between each set of observations. Instead of running an assimilation every timestep ACACIA runs
every 100–250 timesteps, or 2–5 times between observation datasets.

Parameter Met Office AOPP / OU Annulus (equivalent) Annulus (used)
Nx 107 106 121088 121088
Ny 100000 10000 9000 9000
tb 5 h 5 h 1.3 s 26 s
tf 1 h 1 h 0.3 s 26 s
shmin 300 km 340 km 0.35 cm 0.21 cm
shmax 400 km 540 km 0.47 cm 0.42 cm
sv 3.0 3.0 N/A 0.50–0.75 cm
α 3.5 3.5 3.5 5.92
f 10−4 rad s−1 10−4 rad s−1 2Ω 2Ω
G 4× 10−4 rad s−1 5× 10−4 rad s−1 8.9Ω 8.9Ω
∆t 15 min 7.5 min 0.065 s 2.5 s
δt 15 min 7.5 min 0.065 s 0.02 s
λ 0.25 0.2 0.96 0.96

Table 1: Typical parameters for the Met Office operational (Lorenc et al., 1991) and AOPP / OU Mars (Lewis
et al., 1996; Montabone et al., 2006) analysis correction schemes, equivalent annulus values scaling down from the
Met Office values, and the range of values eventually used in the annulus assimilations. Ny for Earth is from Kalnay
(2003, p. 13). Note sv is defined differently in the Met Office method.

4 Observations - some technical points

The observations may be available from the authors on request.

4.1 ∆T in each datafile

Figure S4 shows the temperature difference between the two cylinders as a function of time for each of the
datafiles.

4.2 Data pre-processing

First we discarded the first 225 datasets from datafile expf5, because these datasets were separated by less
than 5 s, and the algorithm is much simpler to code if the time between each dataset is the same.

Forcing parameters

For each dataset two raw measurements exist for Ω and ∆T . We pre-processed these measurements by
using the mean of the two values unless they differed by more than 2% or differed from the value for the
previous dataset by more than 2%. In these cases any spurious measurements (occasionally values of zero
were recorded) were removed manually.
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(a) expf2 (b) expf5 (all 3SV)

(c) expf6 (all 3SV)

Figure S4: Temperature difference ∆T = Tb − Ta as functions of time in each of the experimental datafiles. Note
that the scatter probably represents measurement error and not real scatter in the forcing.

Both ∆T and Ω used by each ACACIA step are extracted from the observational dataset for the obser-
vations valid at the analysis time (or the closest observations in time, if the analysis time does not coincide
with any observations).

Velocities

The number of raw and processed velocity observations in each datafile are:

Datafile expf2 expf5 expf6
Observations (raw) 1207546 3577702 2408183
Observations (processed) 1206296 2877609 2405305
Datasets (processed) 2150 1822 2200
Datasets at each vertical level 430 911 1100

To pre-process the velocity observations, we first removed any (erroneously recorded) observations outside
the horizontal boundaries of the fluid. We then used an automated filter to identify the 15 nearest neighbours
for each observation. The filter calculated the mean and standard deviation of their velocities, and removed
the observation if either velocity component fell outside ±5σ from the mean of the 15 neighbours. The filter
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did not process observations within 5% of the radius of either boundary, as velocities there are small and
observational error has a larger percentage effect on the spread. This automated filter erroneously removed
about 400–500 good observations, but this is less than 0.1% of the total, an acceptable loss of good data if
all the bad observations are removed as well.

A final step was required after running the filter. Because the velocity and parameter observations were
recorded independently they recorded different times for their measurements. This was resolved by manually
identifying the Ω transitions in the velocity data and matching these to transitions in the measured Ω
parameter, and then redefining the time of the first dataset to be zero.

Subsets and missing data

As noted in the main text, to simplify the coding we assumed the subsets in a particular dataset were valid
at the same time. Because the zero point of the datafile’s time measurement is arbitrary, we defined this
time to be at the start of the 5 s window. The times corresponding to the various subsets are listed below.

A few datasets were missing from datafiles expf5 and expf6. The sequences of assimilations were chosen
so as not to overlap with any of the missing datasets. The missing observational datasets for each datafile
and subset were:

Datafile Subset Time Missing datasets (times in s)
expf2 1 blue 2.8 s None

2 red 3.6 s None
expf5 1 blue 0.7 s 1295, 1320, 2230, 2915, 3495, 6365, 7850, 8735, 9055, 9075, 9085, 9100, 9105

2 red 1.5 s 375, 960, 1295, 1320, 1905, 2210, 2230, 3215, 3495, 6365, 7800, 8735, 9055, 9085, 9095

3 orange 2.3 s 375, 960, 1320, 1905, 2210, 2975, 3215, 4825 ,7825, 7875, 8230, 8735, 9055, 9085

expf6 1 blue 0.9 s 1075, 6535, 9795, 10885, 10915

2 red 1.9 s 1075, 5645, 6795, 9935, 10695, 10885, 10895, 10915

4.3 Estimate of observational error

We used a simple estimate of the observational error; in reality a full observational error analysis would be
more complicated than presented here. For the sake of a little extra accuracy this is not worth the effort,
however, because the observational error covariance R is generally much smaller than the background error
covariance B and so the assimilation converges towards the observed values anyway.

DigImage (Dalziel, 1995) records the observations as sets of images over a Nx×Nx pixel grid (Fig. S5a).
A single particle’s position is defined as the centre of the pixel, shown in Fig. S5b. Assuming a uniform
distribution of particles, the position of a single particle is uniformly distributed within a range 2b/Nx in
each direction, where b is the outer cylinder radius, so the error in a single particle’s position has mean zero
and standard deviation σs

x = σs
y = b/(

√
3Nx) using the properties of the uniform distribution, and the error

is isotropic. Each observation position (xoi , y
o
i ) is a mean over ns snapshots (ns = 5 here), which reduces the

positional error by a factor of
√
ns. So we obtain the positional error

σxo
i

= σyoi =
b

Nx
√

3ns
(34)

Each component of the velocity is given by the distance the particle has moved over the observation
period tobs divided by that period. tobs = 1 s and is assumed to be exact. The speed in each direction is
given by the difference in position between the start and end of the particle track, divided by tobs, so this
gives an error of √(

σs
x

tobs

)2

+

(
σs
y

tobs

)2

=
√

2
σs
x

tobs
(35)

for a single pair of start and end points. The velocity is averaged over a number of particle pairs in the
track, approxmiately ns, which reduces the velocity error by a factor of

√
ns. The velocity error is isotropic
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(a) Observation grid with 32x32 pixels.(b) Detail of a single pixel, show-
ing an observation position (dot),
and the point at which it is defined
(cross).

Figure S5: Schematic of the observation grid and a single pixel.

as well, so the error in (R,φ) velocity (the form required by the assimilation) is the same as in (x, y) velocity
(in which the observations are recorded). Substituting in for σs

x we obtain the velocity error

σuo
i

= σvoi =
b

Nxtobs

√
2

3ns
(36)

and hence the observational error covariance is a diagonal matrix

R =
2

3ns

(
b

NXtobs

)2

I (37)

Putting in the values Nx = 512, tobs = 1 s, ns = 5, and b = 8.0 cm, this gives errors in the observed
positions of 0.0040 cm and velocities of 0.0057 cm s−1. Note that although the observation error is uniformly
distributed the assimilation assumes a normal distribution of error, so the approximation is made that the
standard deviation of the two is the same. In practice the error distribution is approximate enough for this
to be OK. The assimilation also assumes that the positions of the observations are measured exactly, so the
error in the observed positions doesn’t enter into the calculations.

4.4 Weighting for verification

We verify the analyses against observations distributed irregularly in space. For verification scores represen-
tative of the whole domain (such as residual error), it is generally not appropriate to consider all observations
equivalent, because they are clustered in some places and sparse in others, and an observation in a sparse
region is representative of a larger area. To account for this we assigned the n-th analysis-verification pair a
weight wn = 1/dn, where dn is the local observation density. The total weight over N pairs is W =

∑N
n=1 wn.

For an observation at Cartesian coordinates (xn, yn) with rn =
√
x2n + y2n, we define the data density to be

the number of observations within rc of the observation, divided by the area enclosed by rc:

dn =
1

A

∑
x,y

[{
(x− xn)2 + (y − yn)2

}
≤ r2c

]
(38)

where the sum is over all observations at that time, and A is the area. rc is a representative scale, and tests
showed that the distribution of weight is not particularly sensitive to its value, so it was set to 1 cm. The
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Table 2: List of parameters tested to find the optimal assimilation parameters for the regular flow regime
assimilations. Starting the assimilation at different observation levels and changing the multiple of the
maximum distance to the nearest neighbour to use in the background transform were also tested, but made
no difference.

Parameter Symbol Values Comments
Assimilation time / s ∆t 0.2, 0.5, 1.0, 2.5, 5.0
Assimilation window length / s tb + tf 24, 48, 96, 192 (with tb/tf = 3)
Assimilation window asymmetry tb/tf 1/3, 0.5, 1, 2, 3, 3.8, 5 (with tb + tf = 48 s)
Horizontal correlation scales / cm shmin 0.1, 0.21, 0.26, 0.65, 1.61

shmax 0.2, 0.42, 0.42, 2.6, 2.6 (as pairs)
Vertical correlation scales / cm svmin 0.5, 0.5, 1.6, 3.15

svmax 0.75, 3.15, 3.6, 3.6 (as pairs)
Maximum influence cutoff α 2.33, 3.5, 5.92

area depends on how close the point is to the inner or outer boundaries; elementary geometry gives us:

A =

 r2c (π − φ1) + b2φ2 − brn sinφ2 b− rc < rn
πr2c a+ rc ≤ rn ≤ b− rc
r2c (π − φ3 + sinφ3 cosφ3)− a2(φ4 − sinφ4 cosφ4) rn < a+ rc

(39)

where

cosφ1 =
r2c + r2n − b2

−2rcrn
cosφ2 =

b2 + r2n − r2c
2brn

cosφ3 =
r2c + r2n − a2

2rcrn
cosφ4 =

a2 + r2n − r2c
2arn

(40)

5 Optimizing the assimilation algorithm

Several parameters in the assimilation can be tuned to optimize its accuracy. AC is usually optimized in
an empirical sense, where the ‘best’ parameter values are those which give the most accurate analysis. We
describe below a range of tests to find the most accurate combination of parameters. The accuracy of
the analysis was judged by (a) the residual error, (b) the number of assimilation cycles required for the
observations and background to converge, indicated by the first minimum in the residual error curve, (c) the
real time taken to compute each assimilation, and (d) a visual comparison of the analysis and observations, to
note any systematic errors. Criterion (b) can also be evaluated by measuring the RMS size of the increment
in each analysis, which also falls to a minimum on convergence. For radial velocity it is given by

uinc =

√√√√∑
ijk

δu2ijk∆Vijk

/∑
ijk

∆Vijk (41)

where δuijk is the radial velocity increment at the analysis time at position (i, j, k) on the model grid.
Weighting is by ∆Vijk, the model grid volume element at (Ri, φj , zk), and vinc is defined similarly.

5.1 Regular flow (datafile expf2)

We ran 50 s tests starting at tstart = 8335 s and finishing at tstop = 8385 s in expf2 (2S regime, Ω =
0.775 rad s−1), using subset blue for assimilation and subset red for verification. The following parameters
were used as a ‘standard’, changing one at a time: assimilation time ∆t = 0.5 s, window length backwards
in time tb = 36 s, window length forwards in time tf = 12 s, minimum and maximum horizontal correlation
scales shmin = 0.26 cm and shmax = 0.42 cm, minimum and maximum vertical correlation scales svmin = 0.50 cm
and svmax = 0.75 cm, and maximum influence cutoff α = 3.5. We varied each of these parameters using the
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Figure S6: Radial velocity analysis increments (Eq. 41) in the ACACIA 2S regime test varying assimilation
time ∆t. The lines correspond to 0.2 s (solid), 0.5 s (dotted), 1.0 s (dashed), 2.5 s (dot-dash), and 5.0 s
(dot-dot-dot-dash).

values in Table 2, while keeping all the others constant. We made the assumption that each parameter can
be varied independently before combining all the optimum values. This is required because it is not practical
to test all possible combinations of parameter values.

Assimilation time ∆t (time between assimilations): Overall, for u, longer assimilation times give
better analyses (i.e. lower residual errors), and for v the opposite is the case. The u result was unexpected,
and we have not yet found an explanation for it. This result is generally true at each vertical level, so overall
the best choice is the intermediate 1.0 s. To cut down on the amount of data generated, however, 2.5 s was
chosen. The convergence time depends approximately linearly on the assimilation time, so a similar number
of assimilations are required to converge in each case (Fig. S6).

Assimilation window length tb+tf : In general (both u and v, at most levels), the shorter the window the
smaller the residual error. The convergence rate is approximately the same in each case. Hence one should
use the shortest possible window length (subject to a point made below about the window asymmetry). As
the window length increases, data is used from further into the future and past relative to the analysis time.
If the baroclinic wave has nonzero azimuthal phase speed, the window includes observations from times
when the wave is out of phase with its position at t = ta. This phase difference grows as the window length
increases, and hence the accuracy decreases as the wave is ‘smeared’ out.

Assimilation window asymmetry tb/tf : At the different levels there were different results, but at
each level there was a definite order with either the highest or lowest tb/tf giving the smallest residual
error, although the differences were marginal. To compromise between these results a symmetrical window
was chosen, which is quite different from L91, who used an asymmetric window with tb/tf = 5. Shorter
assimilation windows give better results, but we also want some observations within the window at each level
both forward and backward in time from ta. The shortest window that guarantees this is tf = tb = 26 s.

Horizontal correlation scales shmin and shmax: These correlation scales should represent the general size
of the features in the flow. The tests showed that the larger sh is the longer the convergence time. In general
small correlation scales were better, but there was not much to choose between these smaller values. For
the small values, over all the vertical levels, comparing [shmin, s

h
max] =[0.1 cm, 0.2 cm] with [0.21 cm, 0.42 cm]

(same shmax/s
h
min ratio) gave better results for higher shmin. Comparing [0.21 cm, 0.42 cm] with [0.26 cm,

0.42 cm] (same shmax, varying shmin) gave similar results for both. Hence, shmax/s
h
min = 2 was chosen with

shmin = 0.21 and shmax = 0.42, as the smaller shmin required marginally less computing resources.
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Table 3: List of parameters tested to find the optimal assimilation parameters for the chaotic data.

Parameter Symbol Values Comments
Assimilation time / s ∆t 0.5, 1.0, 2.5
Assimilation window length / s tb + tf 22, 26, 42, 62 (with tb = tf)
Assimilation window asymmetry tb/tf 4/9, 1, 2.25, 3 1/3 (with tb + tf = 26 s)
Horizontal correlation scales / cm shmin 0.10, 0.15, 0.21, 0.30

shmax 0.20, 0.30, 0.42, 0.60 (as pairs)

Vertical correlation scales svmin and svmax: The vertical correlation scales depend on the vertical posi-
tions of the observations, because as this scale increases whole new datasets may be added to the observation
vector. The scales must be large enough so that all the model levels are influenced by at least one set of
observations. Over the range of values tested, larger vertical correlation scales gave longer convergence. For
v the residual increases as sv increases, but for u the order is different at different levels, so it was decided
to use the smallest values svmin = 0.50 cm and svmax = 0.75 cm. With the values of α used, even these small
values ensured all model levels were influenced by at least one set of observations.

Maximum observation influence cutoff α: The tests used α = 2.33 (50% loss of observational ‘influ-
ence’ – see earlier), 3.5 (26% loss), and 5.92 (5% loss). Considering all five observation levels together, smaller
α gave a larger u residual error, and larger α gave a larger v residual, but the differences were negligible.
The higher values gave smoother analysis fields, however, so α = 5.92 was chosen.

Summary of test results: In most of the tests there was only a marginal difference between the poorest
result and the best result, suggesting that most of the values scaled down from equivalent Earth values
(Table 1) are generally good. The optimal parameter values chosen for the regular regime assimilations were
as follows: ∆t = 2.5 s, tf = tb = 26 s, shmin = 0.21 cm, shmax = 0.42 cm, svmin = 0.50 cm, svmin = 0.75 cm, and
α = 5.92.

5.2 Chaotic flow (datafiles expf5 and expf6)

Initially we ran the first assimilation in the chaotic regime using the optimal parameters determined in the
previous section. This was assimilation m3sv1 and ran for 500 s in the expf5 datafile at Ω = 2.3 rad s−1

starting at t = 2250 s and finishing at t = 2750 s. tf and tb were changed to 13 s as there are only 10 s
between consecutive observations at each level in the chaotic data, and 13 s is the smallest window that
always includes at least one dataset at each level forward and backwards from the analysis time.

However, this assimilation produced analyses with each cyclonic lobe at the upper level split into two
eddies (Fig. S7, left), while the observations suggest a single vortex. This problem is due to holes in the
distribution of observations at three places in the flow (Fig. S7, right; similar holes exist at z = 4.3 cm),
which are due to the neutrally buoyant particles falling out of suspension and forming a pile on the bottom
of the tank. The lack of constraining observations in this region then led to a poor analysis, and as this
cannot be fixed within the observational data it can only be fixed within the assimilation, by finding a set
of parameter values that produces a better analysis in this regime.

We ran several 100 s assimilations to test the sensitivity of the analysis to the parameters again, starting
at t = 2250 s in expf5 (Ω = 2.3 rad s−1), and using the red observational subset for assimilation and the
orange subset for verification. Table 3 lists the values tested. The set of standard parameters were the same
as for regular flow, but with tb = tf = 13 cm and increased vertical correlation scales svmin = 0.75 cm and
svmax = 1.00 cm to ensure the observations affect all model grid levels (there are only two observation levels
in the chaotic datafiles).

Assimilation time ∆t (time between assimilations): A shorter assimilation time gave a better analysis
for both u and v in terms of residual error. This result was more pronounced at z = 9.7 cm than at 4.3 cm.
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ASSIMILATED VELOCITY FIELD
Time = 2660.00s    Height z = 9.70cm

Blue = assimilated state     Red = verifying observations
Scale: 0.09in = 0.11cm/s

Number of verifying observations = 678
Assimilation dataset = 2    Verification dataset = 3

Figure S7: Left: Detail of analysis m3sv1 at z = 9.7 cm, ta = 2660 s. The westerly jet stream can be seen
in the observations (red vectors) but there is an artefact of the assimilation in the analysis (blue vectors) at
the centre of the cyclone. Right: Instantaneous velocity streamlines showing all the velocity vectors between
t = 2500 s and t = 2700 s in datafile expf5 at z = 9.7 cm. Observations with zero velocity appear as dots.
The three holes in the observations are clear.

The improvement from 2.5 s to 1.0 s was substantial (10%), and from 1.0 s to 0.5 s less so (2%), so we chose
∆t = 1.0 s as a compromise between accuracy and speed.

Window length tb + tf : The results were different for each level and also between u and v. In the v
velocity a shorter window led to a poorer assimilation, and in the u velocity at z = 9.7 cm a shorter window
led to a better assimilation (negligible effect at z = 4.3 cm).

Window asymmetry tb/tf : In the u velocity the difference was marginal, but higher tb/tf was generally
found to be better. In the v velocity the opposite effect was true, so we chose a symmetrical window again,
with tb = 21 s and tf = 21 s. (There was only marginal improvement in making the window longer than this,
but with a linear increase in runtime.) The reason for the difference in results between the u and v velocities
is not clear.

Horizontal correlation scales shmin and shmax: In all cases smaller correlation scales led to better assim-
ilations, so we chose shmin = 0.1 cm and shmax = 0.2 cm.

Summary of test results: The revised parameters are ∆t = 1.0 s, tb = tf = 21.0 s, shmin = 0.1 cm,
shmax = 0.2 cm, svmin = 0.75 cm, svmax = 1.00 cm, and α = 5.92.

6 Analysis increments for various assimilations

Figure S8 shows RMS analysis increments (Eq. 41) from various assimilations described in the main text.
In m2s1 (Figs S8a, b) the v velocity increment is about double the u velocity increment, and the assimi-

lation converges to an optimum analysis in less than 25 s. In the 3AV assimilations (not shown) the velocity
increments are about the same size with approximately the same convergence time.

In m3av2s1 (Figs S8c, d) there is a large jump near the start of the assimilation. The rise begins at
t ∼ 5725 s, reaches a maximum at t ∼ 5750 s, and subsides by t ∼ 5800 s. The first two times correspond
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to the first time observations from beyond the Ω transition enter the assimilation window (as tb = 26 s),
and the time of the Ω transition itself. The third time shows that it takes about 50 s for the assimilation to
recover from a change in rotation rate. Note that this rotation rate transition has only a small effect on the
residual error, much less than in assimilation m3sv3a.

Finally, in m3sv3a (Figs S8e, f) the rapid increase in the size of the analysis increment as Ω changes
abruptly is clear.

7 Residual error dependence on Ω — significance test

Fig. S9 shows the residual error as a function of rotation rate for u and v, using all regular regime assimilations
except m3av2s1. At first glance the plots seem to show some weak positive slopes, but because each point
in each line has an error associated with it, a proper analysis requires the distribution of possible slopes. We
can estimate the distribution of slopes using a bootstrap method. For each line, we generated a sample line
using the means and standard deviations at each Ω. From this we calculated the slope of the line using the
IDL routine LINFIT. This was repeated 500 000 times to give a distribution of possible slopes for each line,
from which the 2.5% and 97.5% percentiles were extracted to give 95% confidence limits on the slopes of the
lines. The result was that in no cases did ‘zero slope’ fall outside the 95% confidence intervals, so at this
significance level there is no trend (positive or negative) between the residual error and the annulus rotation
rate.
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(a) m2s1 radial velocity increment (b) m2s1 azimuthal velocity increment

(c) m3av2s1 radial velocity increment (d) m3av2s1 azimuthal velocity increment

(e) m3sv3a radial velocity increment (f) m3sv3a azimuthal velocity increment

Figure S8: RMS analysis increments averaged over the whole volume for regular assimilations m2s1 (2S,
top), m3av2s1 (3AV to 2S transition, middle), and chaotic assimilation m3sv3a (3SV assimilation over a
rotation rate transition, bottom).
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(a) u velocity (b) v velocity

Figure S9: u and v residual errors at each level as a function of rotation rate Ω for the regular regime
assimilations. The mean residual error over all analyses is plotted as a dot, with the standard deviation as
error bars. Results from assimilation m3av2s1 are not included.
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