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General Circulation of Planetary Atmospheres:

Insights from Rotating Annulus and Related Experiments

Peter L. Read1, Edgar P. Pérez2, Irene M. Moroz2, and Roland M. B. Young1

1.1. LABORATORY EXPERIMENTS
AS “MODELS” OF PHYSICAL SYSTEMS

In engineering and the applied sciences, the term
“model” is typically used to denote a device or concept
that imitates the behavior of a physical system as closely
as possible, but on a different (usually smaller) scale,
possibly with some simplifications. The aim of such a
model is normally to evaluate the performance of such
a system for reasons connected with its exploitation for
economic, social, military, or other purposes. In the con-
text of the atmosphere or oceans, numerical weather and
climate prediction models clearly fall into this category.
Such models are extremely complicated entities that seek
to represent the topography, composition, radiative trans-
fer, and dynamics of the atmosphere, oceans, and surface
in great detail. As a result, it is generally impossible to
comprehend fully the complex interactions of physical
processes and scales of motion that occur within any given
simulation. The success of such models can only be judged
by the accuracy of their predictions as directly verified
(in the case of numerical weather prediction) against sub-
sequent observations and measurements. Similar models
used for climate prediction, however, are often compara-
ble in complexity to those used for weather prediction but
are frequently used as tools in attempts to address ques-
tions of economic, social, or political importance (e.g.,
concerning the impact of increasing anthropogenic green-
house gas emissions) for which little or no verifying data
may be available.

In formulating such models and interpreting their
results, it is necessary to make use of a different class of
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model, the “conceptual” or “theoretical” model, which
may represent only a small subset of the geographical
detail and physical processes active in the much larger,
applications-oriented model but whose behavior may be
much more completely understood from first principles.
To arrive at such a complete level of understanding, how-
ever, it is usually necessary to make such models as simple
as possible (“but no simpler”) and in geometric domains
that may be much less complicated than found in typi-
cal geophysical contexts. An important prototype of such
a model in fluid mechanics is that of dimensional (or
“scale”) analysis, in which the entire problem reduces to
one of determining the leading order balance of terms
in the governing equations and the consequent depen-
dence of one or more observable parameters in the form
of power law exponents. Following such a scale analysis,
it is often possible to arrive at a scheme of mathematical
approximations that may even permit analytical solutions
to be obtained and analyzed. The well-known quasi-
geostrophic approximation is an important example of
this approach [e.g., see Holton, 1972; Vallis, 2006] that has
enabled a vast number of essential dynamical processes in
large-scale atmospheric and oceanic dynamics to be stud-
ied in simplified (but nonetheless representative) forms.

For the fundamental researcher, such simplified “con-
ceptual” models are an essential device to aid and advance
understanding. The latter is achievable because simplified,
approximated models enable theories and hypotheses to
be formulated in ways that can be tested (i.e., falsified, in
the best traditions of the scientific method) against obser-
vations and/or experiments. The ultimate aim of such
studies in the context of atmospheric and oceanic sciences
is to develop an overarching framework that sets in per-
spective all planetary atmospheres and oceans, of which
Earth represents but one set of examples [Lorenz, 1967;
Hide, 1970; Hoskins, 1983].
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10 MODELING ATMOSPHERIC AND OCEANIC FLOWS

Warm water

(b)

Working fluid
Cold water

(a)

Figure 1.1. (a) Schematic diagram of a rotating annulus;
(b) schematic equivalent configuration in a spherical fluid shell
(cf. an atmosphere).

The role of laboratory experiments in fluid mechanics
in this scheme would seem at first sight to be as models
firmly in the second category. Compared with a plane-
tary atmosphere or ocean, they are clearly much simpler
in their geometry, boundary conditions, and forcing pro-
cesses (diabatic and mechanical), e.g., see Figure 1.1. Their
behavior is often governed by a system of equations that
can be stated exactly (i.e., with no controversial param-
eterizations being necessary), although even then exact
mathematical solutions (e.g., to the Boussinesq Navier-
Stokes equations) may still be impossible to obtain. Unlike
atmospheres and oceans, however, it is possible to carry
out controlled experiments to study dynamical processes
in a real fluid without recourse to dubious approxima-
tions (necessary to both analytical studies and numerical
simulation). Laboratory experiments can therefore com-
plement other studies using complex numerical models,
especially since fluids experiments (a) have effectively infi-
nite resolution compared to their numerical counterparts
(though can only be measured to finite precision and res-
olution), (b) are often significantly less diffusive than the
equivalent fluid, e.g., in eddy-permitting ocean models,
and yet ( c) are relatively cheap to run!

In discussing the role of laboratory experiments, how-
ever, it is not correct to conclude that they have no direct
role in the construction of more complex, applications-
oriented models and associated numerical tools (such as
in data assimilation). Because the numerical techniques
used in such models (e.g., finite-difference schemes, eddy
or turbulence parameterizations) are also components of
models used to simulate flows in the laboratory under
similar scaling assumptions, laboratory experiments can
also serve as useful “test beds” for directly evaluating and
verifying the accuracy of such techniques in ways that
are far more rigorous than may be possible by compar-
ing complex model simulations solely with atmospheric
or oceanic observations. Despite many advances in the
formulation and development of sophisticated numeri-
cal models, there remain many phenomena (especially

those involving nonlinear interactions of widely differ-
ing scales of motion) that continue to pose serious
challenges to even state-of-the-art numerical models yet
may be readily realizable in the laboratory. This is espe-
cially true of large-scale flow in atmospheres and oceans,
for which relatively close dynamical similarity between
geophysical and laboratory systems is readily achiev-
able. Laboratory experiments in this vein therefore still
have much to offer in the way of quantitative insight
and inspiration to experienced researchers and fresh
students alike.

1.2. ROTATING, STRATIFIED EXPERIMENTS AND
GLOBAL CIRCULATION OF ATMOSPHERES AND

OCEANS

At its most fundamental level, the general circulation
of the atmosphere is but one example of thermal convec-
tion in response to impressed differential heating by heat
sources and sinks that are displaced in both the vertical
and/or the horizontal in a rotating fluid of low viscosity
and thermal conductivity. Laboratory experiments inves-
tigating such a problem should therefore include at least
these attributes and be capable of satisfying at least some
of the key scaling requirements for dynamical similarity
to the relevant phenomena in the atmospheric or oceanic
system in question. Such experimental systems may then
be regarded [e.g., Hide, 1970; Read, 1988] as schemati-
cally representing key features of the circulation in the
absence of various complexities associated, for example,
with radiative transfer, atmospheric chemistry, boundary
layer turbulence, water vapor, and clouds in a way that is
directly equivalent to many other simplified and approxi-
mated mathematical models of dynamical phenomena in
atmospheres and oceans.

Experiments of this type are by no means a recent phe-
nomenon, with examples published as long ago as the
mid to late nineteenth century [e.g., Vettin, 1857, 1884;
Exner, 1923]; see Fultz [1951] for a comprehensive review
of this early work. Vettin [1857, 1884] had the insight
to appreciate that much of the essence of the large-scale
atmospheric circulation could be emulated, at least in
principle, by the flow between a cold body (represent-
ing the cold, polar regions) placed at the center of a
rotating, cylindrical container and a heated region (rep-
resenting the warm tropics) toward the outside of the
container (see Figure 1.2). Vettin’s experiments used air
as the convecting fluid, contained within a bell jar on a
rotating platform. As one might expect of a nineteenth
century gentleman, he then used cigar smoke to visual-
ize the flow patterns, demonstrating phenomena such as
convective vortices and larger scale overturning circula-
tions. However, these experiments only really explored the
regime we now know as the axisymmetric or “Hadley”
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Figure 1.2. Selection of images adapted from Vettin [1884]
(see http://www.schweizerbart.de). Reproduced with permis-
sion from the publishers, showing the layout of his rotating
convection experiment and some results.

regime, since the flows Vettin observed showed little evi-
dence for the instabilities we now know as “baroclinic
instability” or “sloping convection” [Hide and Mason,
1975].

As an historical aside, it is interesting to note that early
meteorologists such as Abbe [1907] intended for labora-
tory experiments of this type to serve also as models
of the first kind, i.e., as application-oriented, predictive
model atmospheres. They realized that, while it might
be possible in principle to use the equations of atmo-
spheric dynamics to determine future weather, they were
beyond the capacity of mathematical analysis to solve.
They hoped to use these so-called mechanical integra-
tors [Rossby, 1926] under complicated external forcing
corresponding to the observations of the day to repro-
duce and predict very specific flow phenomena observed in
the atmosphere. It was anticipated that many such exper-
iments would be built representing different regions of
Earth’s surface or different times of year, such as when
the cross-equatorial airflow is perturbed by the monsoon
[Abbe, 1907] (although it is not clear whether such an

experiment was ever constructed). However, following the
development of the electronic computer during the first
half of the twentieth century and Richardson’s [1922] pio-
neering work on numerical weather prediction, these more
complex laboratory representations of the atmosphere
were superseded.

The later experiments of Exner [1923] explored a dif-
ferent regime in which baroclinic instability seems to have
been present. The flows he demonstrated were evidently
quite disordered and irregular, likely due in part to the
parameter regime he was working in but also perhaps
because of inadequate control of the key parameters. It
was not until the late 1940s, however, that Fultz began
a systematic series of experiments at the University of
Chicago on rotating fluids subject to horizontal differen-
tial heating in an open cylinder (hence resulting in the
obsolete term “dishpan experiment”) and set the subject
onto a firm footing. Independently and around the same
time, Hide [1958] began his first series of experiments at
the University of Cambridge on flows in a heated rotating
annulus, initially in the context of fluid motions in Earth’s
liquid core. By carrying out an extensive and detailed
exploration of their respective parameter spaces, both of
these pioneering studies effectively laid the foundations
for a huge amount of subsequent work on elucidating
the nature of the various circulation regimes identified
by Fultz and Hide, subsequently establishing their bifur-
cations and routes to chaotic behavior, developing new
methods of modeling the flows using numerical tech-
niques, and measuring them using ever more sophisticated
methods, especially via multiple arrays of in situ probes
and optical techniques that exert minimal perturbations
to the flow itself.

An important aspect of the studies by Fultz and Hide
was their overall agreement in terms of robustly identi-
fying many of the key classes of circulation regimes and
locating them within a dimensionless parameter space. A
notable exception to this, at least in early work, was the
lack of a regular wave regime in Fultz’s open cylinder
experiments, in sharp contrast to the clear demonstration
of such a regime in Hide’s annulus. As further discussed
below, this led to some initial suggestions [Davies, 1959]
that the existence of this regime was somehow depen-
dent on having a rigid inner cylinder bounding the flow
near the rotation axis. This was subsequently shown not
to be the case in open cylinder experiments by Fultz
himself [Spence and Fultz, 1977] and by Hide and his
co-workers [Hide and Mason, 1970; Bastin and Read, 1998]
and two-layer [Hart, 1972, 1985] experiments that clearly
showed that persistent, near-monochromatic baroclinic
wave flows could be readily sustained in a system without
a substantial inner cylinder. It is likely, therefore, that early
efforts failed to observe such a regular regime in the ther-
mally driven, open cylinder geometry because of a lack of
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12 MODELING ATMOSPHERIC AND OCEANIC FLOWS

close experimental control, e.g., of the rotation rate or the
static stability in the interior.

Earlier studies in this vein were extensively reviewed by
Hide [1970] and Hide and Mason [1975]. More recently,
significant advances have been presented by various
groups around the world, including highly detailed exper-
imental studies in the “classical” axisymmetric annulus
of synoptic variability, vacillations, and the transitions
to geostrophically turbulent motions by groups at the
Florida State University [e.g., Pfeffer et al., 1980; Buzyna
et al., 1984], the UK Met Office and Oxford Univer-
sity [e.g., Read et al., 1992; Früh and Read, 1997; Bastin
and Read, 1997, 1998; Wordsworth et al., 2008], several
Japanese universities [e.g., Ukaji and Tamaki, 1989; Sug-
ata and Yoden, 1994; Tajima et al., 1995, 1999; Tamaki
and Ukaji, 2003], and, most recently, the Bremen/Cottbus
group in Germany [Sitte and Egbers, 2000; von Larcher
and Egbers, 2005; Harlander et al., 2011] and the Budapest
group in Hungary [Jnosi et al., 2010]. These have been
complemented by various numerical modeling studies
[e.g., Hignett et al., 1985; Sugata and Yoden, 1992; Read
et al., 2000; Maubert and Randriamampianina, 2002; Lewis
and Nagata, 2004; Randriamampianina et al., 2006; Young
and Read, 2008; Jacoby et al., 2011]. In addition, the range
of phenomena studied in the context of annulus exper-
iments have been extended through modifications to the
annulus configuration to emulate the effects of planetary
curvature (i.e., a β-effect) [e.g., Mason, 1975; Bastin and
Read, 1997, 1998; Tamaki and Ukaji, 2003; Wordsworth
et al., 2008; von Larcher et al., 2013] and zonally asymmet-
ric topography [e.g., Leach, 1981; Li et al., 1986; Bernadet
et al., 1990; Read and Risch, 2011]; see also Chapters 2, 3,
7, 16, and 17 in this volume.

The existence of regular, periodic, quasi-periodic, or
chaotic regimes in an open cylinder was also a major fea-
ture of another related class of rotating, stratified flow
experiments using discrete two-layer stratification and
mechanically-imposed shears. Hart [1972] introduced this
experimental configuration in the early 1970s, inspired
by the theoretical work of Phillips [1954] and Pedlosky
[1970, 1971] on linear and weakly nonlinear instabilities
of such a two-layer, rotating flow system. Because of
its simpler mode of forcing and absence of complicated
boundary layer circulations, these kinds of two-layer sys-
tesm were more straightforward to analyze theoretically,
allowing a more direct verification of theoretical pre-
dictions in the laboratory than has typically proved the
case with the thermally driven systems. Subsequent stud-
ies by Hart [Hart, 1979, 1980, 1985, 1986; Ohlsen and
Hart, 1989a,1989b] and others [e.g., King, 1979; Appleby,
1982; Lovegrove et al., 2000; Williams et al., 2005, 2008]
have extensively explored this system, identifying various
forms of vacillation and low-dimensional chaotic behav-
iors as well as the excitation of small-scale, interfacial

inertia-gravity waves through interactions with the quasi-
geostrophic baroclinic waves.

In this chapter, we focus on the “classical” thermally
driven, rotating annulus system. In Section 1.3 we review
the current state of understanding of the rich and diverse
range of flow regimes that may be exhibited in thermal
annulus experiments from the viewpoint of experimen-
tal observation, numerical simulation, and fundamental
(mainly quasi-geostrophic) theory. This will include the
interpretation of various empirical experimental obser-
vations in relation to both linear and weakly nonlinear
baroclinic instability theory. One of the key attributes
of baroclinic instability and “sloping convection” is its
role in the transfer of heat within a baroclinic flow. In
Section 1.4 we examine in some detail how heat is trans-
ported within the baroclinic annulus across the full range
of control parameters, associated with both the boundary
layer circulation and baroclinically unstable eddies. This
leads naturally to a consideration of how axisymmetric
boundary layer transport and baroclinic eddy transports
scale with key parameters and hence how to parameterize
these transport processes, both diagnostically and prog-
nostically, in a numerical model for direct comparison
with recent practice in the ocean modeling community.
Finally, in Section 1.5 we consider the overall role of
annulus experiments in the laboratory in continuing to
advance understanding of the global circulation of plan-
etary atmospheres and oceans, reviewing the current state
of research on delineating circulation regimes obtained
in large-scale circulation models in direct comparison
with the sequences of flow regimes and transitions in the
laboratory. The results strongly support many parallels
between laboratory systems and planetary atmospheres, at
least in simplified models, suggesting a continuing impor-
tant role for the former in providing insights for the latter.

1.3. FLOW REGIMES AND TRANSITIONS

The typical construction of the annulus is illustrated
schematically in Figure 1.1 and consists of a working
fluid (usually a viscous liquid, such as water or silicone
oil, though this can also include air [e.g., see Maubert
and Randriamampianina, 2002; Randriamampianina et al.,
2006; Castrejón-Pita and Read, 2007] or other fluids,
including liquid metals such as mercury [Fein and Pfeffer,
1976]) contained in the annular gap between two coax-
ial circular, thermally conducting cylinders, that can be
rotated about their common (vertical) axis. The cylin-
drical sidewalls are maintained at constant but different
temperatures, with a (usually horizontal) thermally insu-
lating lower boundary and an upper boundary that is also
thermally insulating and either rigid or free (i.e., without
a lid).
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Figure 1.3. Schematic regime diagram for the thermally driven rotating annulus in relation to the thermal Rossby number �

(or stability parameter, ∝ �−2) and Taylor number T ∝ �2, showing some typical horizontal flow patterns at the top surface,
visualized as streak images at upper levels of the experiment.

1.3.1. Principal Flow Regimes

Although a number of variations in these boundary
conditions have been investigated experimentally, almost
all such experiments are found to exhibit the same three
or four principal flow regimes, as parameters such as the
rotation rate � or temperature contrast �T are varied.
These consist of (I) axisymmetric flow (in some respects
analogous to Hadley flow in Earth’s tropics and frequently
referred to as the “upper-symmetric regime”; see below)
at very low � for a given �T (that is not too small); (II)
regular waves at moderate �; and (III) highly irregular,
aperiodic flow at the highest values of � attainable. In
addition, (IV) axisymmetric flows occur at all values of
� at a sufficiently low temperature difference �T (a diffu-
sively dominated regime termed “lower symmetric” [Hide
and Mason, 1975, Ghil and Childress, 1987] to distinguish
it from the physically distinct “upper-symmetric” men-
tioned above). The location of these regimes are usually
plotted on a “regime diagram” with respect to the two (or

three) most significant dimensionless parameters. These
are typically

(a) a stability parameter or “thermal Rossby number”

� =
gα�Td

[�(b − a)]2 , (1.1)

providing a measure of the strength of buoyancy forces
relative to Coriolis accelerations;

(b) a Taylor number

T =
�2(b − a)5

ν2d
, (1.2)

measuring the strength of Coriolis accelerations relative
to viscous dissipation; and

(c) the Prandtl number

Pr =
ν

κ
. (1.3)

Here g is the acceleration due to gravity, α the thermal
expansion coefficient of the fluid, ν the kinematic viscos-
ity, κ the thermal diffusivity, and a, b, and d the radii of
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14 MODELING ATMOSPHERIC AND OCEANIC FLOWS

the inner and outer cylinder and the depth of the annulus,
respectively. Figure 1.3 shows a schematic form of this
diagram with the locations of the main regimes indicated.

From a consideration of the conditions under which
waves occur in the annulus (especially the location in the
parameter space of the upper-symmetric transition) and
a comparison with the results of linear instability the-
ory, it is clear that the waves in the annulus are fully
developed manifestations of baroclinic instability (often
referred to as “sloping convection” from the geometry
of typical fluid trajectories; for example, see Hide and
Mason [1975]). Since these flows occur in the interior
of the annulus (i.e., outside ageostrophic boundary lay-
ers) under conditions appropriate to quasi-geostrophic
scaling, a dynamical similarity to the large-scale midlat-
itude cyclones in Earth’s atmosphere is readily apparent,
though with rather different boundary conditions. A more
detailed discussion of the properties of these flows is
given below and by Hide and Mason [1975] and Ghil and
Childress [1987]. Associated with this conclusion is the
implication that the waves develop in order to assist in
the transfer of heat both upward (enhancing the static
stability) and horizontally down the impressed thermal
gradient (i.e., tending to reduce the impressed horizontal
gradient). The action of heat transport by the waves and
axisymmetric flows will be considered in the next section.

1.3.2. Axisymmetric/Wave Transition and Linear
Instability Theory

The previous section indicated the conditions under
which baroclinic waves occur in the annulus and their
role as a means of transferring heat upward and against
the horizontal temperature gradient. The Eady model of
baroclinic instability has been commonly invoked as an
idealized, linearized conceptual model to account for the
onset of waves from axisymmetric flow [Hide, 1970; Hide
and Mason, 1975, Ghil and Childress, 1987]. Although the
Eady model is highly idealized, it does seem to predict the
location of the onset of large-amplitude waves remarkably
close to the conditions actually observed, at least at high
Taylor number (note that the Eady problem in its “classi-
cal form” is inviscid). Apparent agreement can be made
even closer if the Eady problem is modified to include
Ekman boundary layers by replacing the w = 0 boundary
condition with the Ekman compatibility condition

w =
E1/2

√
2Ro

∇2ψ , z = 0, 1, (1.4)

where ψ is the stream function for the horizontal flow.
This naturally brings in the Taylor number familiar
to experimentalists (via Ekman number E) and leads
to a plausibly realistic envelope of instability at low
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Figure 1.4. Regime diagram based on the extension of Eady’s
baroclinic instability theory to include Ekman layers and flat,
horizontal boundaries. The wave number of maximum insta-
bility is indicated by integer numbers and the transition curves
and contours of e-folding time are given on a Burger number
(Bu ∼ �; see Hide and Mason [1975]) against T plot. (Adapted
from Mason [1975] by permission of the Royal Society).

Taylor number (see Figure 1.4), supporting the hypothesis
[Hide and Mason, 1975] that the “lower symmetric transi-
tion” is frictionally dominated.

The structure of the most rapidly growing instability
has certain characteristic features in terms of, for example,
phase tilts with height. In the thermal annulus, steady
baroclinic waves are also seen to exhibit many of these
features, as determined from experiment and numerical
simulation. The extent to which Eady theory actually pro-
vides a complete theoretical description of the instability
problem in annulus experiments, however, is a somewhat
more complicated question than it at first appears. The
dominant instability in the Eady model relies on the exis-
tence of horizontal temperature gradients on horizontal
boundaries for the required change of sign in the lateral
gradient of quasi-geostrophic potential vorticity, ∂q/∂y,
for instability [e.g., Charney and Stern, 1962]. Elsewhere,
the flow is constructed such that ∂q/∂y = 0. In prac-
tice, however, strong horizontal mass transports in the
Ekman layers result in almost no horizontal tempera-
ture gradients at the boundaries; in reality ∂q/∂y changes
sign smoothly in the interior (e.g., see Figure 1.17c later).
Thus, instability of an internal baroclinic jet is arguably
a more appropriate starting point, preferably including a
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consideration of lateral shears. This was considered by
Bell and White [1988], who examined the stability of an
idealized internal zonal jet flow in a straight, rectangular
channel of the form

U =
1
2
(1 − as + as − sin πy) sin πz, (1.5)

where as is a constant that determines the degree of
horizontal barotropic shear in the otherwise baroclinic
jet. If full account is taken of lateral shear in such an
internal jet (by varying as), however, the critical Burger
number for the onset of waves is found to vary by a factor
of O(10). The precisely applicable value is likely depen-
dent upon subtle details of the shape of the zonal flow
and the imposed lateral boundary conditions, since the
true boundary conditions at the sides of the geostrophic
interior ought really to take proper account of the com-
plex viscous boundary layer structures (e.g., Stewartson
layers), although impermeable, free-slip boundaries have
typically been employed (for mathematical convenience)
in most theoretical studies to date.

Recent exceptions to this include the two-layer studies
by Mundt et al. [1995a, 1995b] and the analysis of the
full thermal annulus problem by Lewis and Nagata [2004].
Mundt et al. [1995a] examined the linear (and nonlinear)
stability of a quasi-geostrophic, two-layer jet in a recti-
linear channel in which internal viscosity was included in
deriving the zonally symmetric basic state. This led to the
formation of viscous (Stewartson) boundary layers adja-
cent to the sidewalls of the channel, within which strong
zonal shear developed as the flow adjusted to the nonslip
condition at each boundary. This was then shown to mod-
ify the critical Froude number for instability by a factor
O(1) for the gravest modes. Similar results were obtained
by Mundt et al. [1995b] in cylindrical geometry, for which
improved agreement with experimental measurements
was shown compared with stability calculations assum-
ing a free-slip outer boundary. The most sophisticated
approach applied so far for the thermal annulus configu-
ration was by Lewis and Nagata [2004], who used numeri-
cal continuation techniques to solve for the linear stability
boundary (as a function of � and T ) of an axisymmetric
baroclinic zonal jet in cylindrical geometry using the full
Navier-Stokes equations for a viscous, Boussinesq fluid.
The results indicated good agreement with the location of
both the upper and lower symmetric transitions as found
in laboratory experiments. They also indicated the influ-
ence of centrifugal buoyancy in modifying the stability
boundary at the lower symmetric transition. These calcu-
lations all serve to demonstrate the quantitative success
of linear stability theory in accounting quantitatively for
the onset of the principal mode of baroclinic instability in
both two-layer and continuously stratified rotating tank
experiments as a supercritical global bifurcation.

1.3.3. Steady Waves and Equilibration: Weakly
Nonlinear Theory

As waves grow in strength from an initial zonal flow,
they typically equilibrate to either a steady or periodically
varying amplitude (“amplitude vacillation”)or even to a
weakly chaotic flow. The linear models of baroclinic insta-
bility cannot account for equilibration and vacillation,
and so we must consider the effects of nonlinearity in the
interaction between the growing wave and the basic zonal
flow. Weakly nonlinear theory was developed in the late
1960s as a means of introducing nonlinearity into linear
instability problems while keeping the mathematics ana-
lytically tractable. The basic assumption of this approach
is that the flow in which the wave grows is only weakly
supercritical, and so only a small range of wave numbers
is unstable and grows relatively slowly. More detailed dis-
cussions can be found [e.g., Drazin, 1978; Hocking, 1978;
Ghil and Childress, 1987; Pedlosky, 1987].

Consider a zonal flow under conditions just inside the
stability threshold with weak supercriticality �. Because
the stability boundary is then asymptotically quadratic in
zonal wave number k about the wave number of the first
mode to go unstable kc (see Figure 1.5), a small range of
k ∼ �1/2 is destabilized. In a periodic x domain where
k is discretized, this may permit only one unstable wave
number. We introduce a “slow” time scale τ defined by

τ = �1/2t, � � 1, (1.6)

(in the sense that it advances more slowly than “normal
time” t) and solve for normal modes of the following
wavelike form in the zonal (x) direction:

a

ac

0 kc

Δ½

Δ

k

Figure 1.5. Schematic stability diagram showing the assumed
(quadratic) form of the critical curve a(k) as a function of wave
number k in the vicinity of the first unstable mode with wave
number kc.
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Figure 1.6. A typical solution to equations (1.9) and (1.10)
showing sustained amplitude oscillations.

τ = R {A(τ )F(y, z) exp k(x − ct)} , (1.7)

where y is the meridional coordinate and z is in the vertical
in the presence of a zonal flow of the form

U = U(y, z) + V(τ )G(y, z). (1.8)

Here A and V are respectively the slowly varying
amplitudes of the wave and the correction to the zonal
flow due to the nonlinear self-interaction of the wave,
whose spatial structure is represented by Gy, z). The
resulting evolution equations for A and V depend upon
the relative magnitude of viscous dissipation:

(i) Weak Dissipation (E1/2/Ro � O(�1/2))
Examples include the Eady or two-layer Phillips prob-

lems with no Ekman layers [e.g., Pedlosky, 1987]. It
can be shown that the problem then reduces to coupled
ordinary differential equations (ODEs) of the form

d2A
dτ 2 = a1A − |a3|A3, (1.9)

dV
dτ

= a4
dA
dτ

, (1.10)

typically resulting in a sustained amplitude modula-
tion, or “vacillation,” associated with the exchange of
potential energy between wave and zonal flow (e.g., see
Figure 1.6).

(ii) Stronger Dissipation (E1/2/Ro = O(1))
Examples include the Eady and Phillips problems with

Ekman damping. It can be shown that the amplitude
equations reduce to the well-known Landau equation
[e.g., see Pedlosky, 1971; Romea, 1977; Drazin, 1978;
Hocking, 1978]

0
0 10

Time t

A
m

p
lit

u
d
e

(a1/|a3|)½

Figure 1.7. Solution to equation (1.11) and (1.12) showing the
approach to a steady equilibrium.

dA
dτ

= a1A − |a3|A3, (1.11)

V = a4|A|2, (1.12)

resulting typically in an asymptotic equilibration toward
a steady amplitude A = (a1/|a3|)1/2 (see Figure 1.7).
These models, of course, represent a considerable over-

simplification of the real equilibration processes in fully
developed baroclinic instability. Indeed, Boville [1981]
noted that Pedlosky’s [1970] approach led to significant
inaccuracies in predicting the amplitude behavior of baro-
clinic waves and failed to observe the predicted amplitude
oscillations close to minimum critical shear. Subsequent
work [Pedlosky, 1982a, 1982b; Warn and Gauthier, 1989;
Esler and Willcocks, 2012] suggests that the dynamical
equilibration is more typically dominated by the behav-
ior of a nonlinear critical layer that develops within the
flow, leading to the wrapping up and eventual homoge-
nization of potential vorticity. The equilibrated state may
then result in convergence toward a steady wave state via
a series of damped amplitude oscillations. The analyti-
cal solutions of Warn and Gauthier [1989] even produced
periodic amplitude oscillations under certain conditions,
resembling an amplitude vacillation, but in which poten-
tial vorticity is reversibly mixed and unmixed. This is
only strictly applicable under conditions of weak fric-
tion close to marginal instability. The recent work of
Willcocks and Esler [2012] also suggests that the mode
of equilibration via a Landau equation, predicted in the
models of Pedlosky [1971] and Romea [1977], probably
applies mainly to the dissipatively destabilized instabil-
ity that occurs for shears less than the critical shear
in the inviscid problem in the presence of Ekman fric-
tion [Holopainen, 1961; Boville, 1981]. The full applica-
bility of any of these models, however, still remains to
be verified in detail in laboratory experiments or fully
nonlinear numerical simulations in continuously strati-
fied flows.
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1.3.4. Wave Number Selection

Within the regular baroclinic wave regime, the flow
tends to equilibrate typically (in the absence of a strong
β-effect, e.g., associated with topographically sloping
boundaries) to a state dominated by a single azimuthal
wave number and its harmonics, which may be steady,
quasi-periodic, or chaotic. The mechanisms by which
rotating annulus waves select which wave number to favor
at fully nonlinear equilibration are still not fully under-
stood but seem likely to share some aspects in common
with mechanisms identified in simple, weakly nonlinear,
spectrallytruncated models of baroclinic instability. Such
models [e.g., see above and Pedlosky, 1970; Drazin, 1970;
Pedlosky, 1971] represent only the leading order nonlinear
interactions between a single mixed baroclinic-barotropic
traveling wave and the background (m = 0) zonal flow
(i.e., suppressing quadratic and higher order wave-wave
interactions). The nonlinear self-interaction of a growing,
linearly unstable wave generates a correction to the m = 0
zonal flow (at second order in wave amplitude) that feeds
back on the growth rate, eventually reducing it to zero
(a steady wave state, for which the modal amplitude
equations may asymptotically reduce to a set of Landau
equations in the presence of some frictional damping), or
with a more complicated, quasi-periodic or chaotic time
dependence [e.g., see Lovegrove et al., 2001, 2002], for
which the modal amplitude equations may reduce asymp-
totically to the classical real or complex Lorenz equations.

When more than one distinct wave number mode is
able to grow from infinitesimal amplitude on a given
zonal flow, weakly nonlinear models do not provide a
unique answer as to what mechanism will act to select
the dominant mode. However, one commonly found fac-
tor is for the flow to preferentially select the mode that
is capable of releasing the most available potential energy
(APE) from the initial flow [Hart, 1981]. In practice, this
may correspond to the mode that can reach the largest
barotropic amplitude [Hart, 1981; Appleby, 1988] pro-
vided nonlinear wave-wave interactions are absent. Where
wave-wave interactions are permitted, the mode selection
may become hysteretic such that a nonoptimal wave mode
(i.e., one that does not release the maximum possible
APE) may persist as the dominant mode if it was pre-
viously dominant under more favorable conditions at an
earlier time. This is found to manifest itself within the
regular flow regime as intransitivity (i.e., multiple equi-
librium states), in which two or more alternative flows
with differing azimuthal wave number m can occur for
a given set of parameters [e.g., Hide, 1970; Hide and
Mason, 1975]. The state obtained in any particular exper-
iment implicitly depends upon the initial conditions. In
addition, transitions between different states in the reg-
ular regime, achieved by slowly changing the external

parameters, often exhibit hysteresis [e.g., Hide and Mason,
1975; Sitte and Egbers, 2000; von Larcher and Egbers,
2005] in that the location of a transition in parameter
space depends upon the direction from which that tran-
sition is approached (e.g., transitions from m = 3 → 4 do
not occur at the same point as m = 4 → 3). In a situation
where the forcing that maintains the background zonal
state is varied cyclically with time over a range that crosses
the boundary between two or more optimal modes, this
can lead to complex and chaotic behavior as the flow pat-
tern flips erratically from one dominant mode to another
[e.g., see Buzyna et al., 1978].

Another issue is how an initially dominant wave flow
may retain its dominance and remain indefinitely stable?
The presence of wave-wave and higher order nonlinear
interactions might be expected to permit the possibility
of secondary instabilities of the primary dominant wave
mode, at least in principle, thereby preventing the sus-
tained dominance of a single baroclinic wave mode. Hide
[1958] and Hide and Mason [1975] showed empirical evi-
dence from a range of early experiments that, depending
upon the radius ratio between inner and outer cylinders,
there was a maximum azimuthal wave number of a sta-
ble and persistent dominant wave such that its azimuthal
wavelength always seemed to exceed roughly 1.5 times the
radial extent of the wave, i.e.,

mmax � 2π(b + a)

3(b − a)
. (1.13)

The prototypical idealized model for such a situation
considers the stability of the basic Rossby-Haurwitz (RH)
mode on the sphere to wavelike barotropic perturbations
[Lorenz, 1972; Hoskins, 1973; Baines, 1976], although this
has also been generalized to investigate baroclinic pertur-
bations and instabilities of the basic RH wave [e.g., see
Kim, 1978; Grotjahn, 1984a, 1984b]. The principal crite-
rion for barotropic stability of the RH wave can be inter-
preted in relation to Fjørtoft’s theorem for energy transfer
in a quasi-geostrophic flow [Fjørtoft, 1953], for which both
energy and squared vorticity must be conserved in non
dissipative nonlinear interactions. This essentially requires
that a given wave mode must lose energy simultaneously
to both a higher and a lower wave number mode. Thus,
the longest wave number modes capable of fitting into the
domain tend to be relatively stable because of the unavail-
ability of longer wavelength modes to which they can lose
energy in an instability. Such an interpretation appears to
be consistent with the criterion in equation (1.13) found
by Hide [1958] and Hide and Mason [1975] for the maxi-
mum azimuthal wave number that can sustain a persistent
dominant wave flow.

Recent work by Young and Read [2013] suggests that
barotropic instability may not be the only possible mech-
anism for breakdown of regular baroclinic wave flows.
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Figure 1.8. Evectors for chaotic flow in the annulus. The black contour lines show the assimilated barotropic time-averaged
horizontal stream function (contours below the middle of the range are dotted), and the grey vectors are the barotropic time-
averaged E vectors. The shading shows the E-vector divergence: black is up to −5 × 10−4 cm/s2, grey is between −5 × 10−4

cm/s−2 and +5×10−4 cm/s2, and white is above +5×10−4 cm/s2. The flow is at � = 3.1 rad/s with Tb −Ta ≈ 4.02◦C. (Adapted
from Young and Read [2013] with permission of John Wiley & Sons, Inc.)

Based on sequences of laboratory measurements assim-
ilated into a Boussinesq Navier-Stokes numerical model
of the annulus, Young and Read [2013] found that local-
ized, small-scale eddies shed from the cyclonic troughs
of a large-scale baroclinic wave mode may be consistent
with a localized baroclinic instability. Figure 1.8 shows the
Evectors [Hoskins et al., 1983; James, 1994] for these mea-
surements at the highest rotation rate investigated. The
barotropic Evector is a horizontal vector defined from cor-
relations between the x−y components of the horizontal
velocity (u, v) by

E = (Ex, Ey) = (v′2 − u′2, −u′v′), (1.14)

where the overbar represents a timeaverage and primed
quantities are deviations from the time-mean flow. Its
divergence provides a measure of the interaction between
the time-mean flow and transient eddies such that
∇ · E > 0 implies a tendency for eddies to strengthen the
mean flow [Hoskins et al., 1983]. For Evectors pointing
in the positive azimuthal direction, there is anticyclonic
cyclogenesis between the divergent region and the outer

cylinder, cyclonic cyclogenesis between the convergent
region and the outer cylinder, and vice versa toward the
inner cylinder. For the baroclinic annulus flows consid-
ered, Young and Read [2013] found the Evectors became
more strongly convergent/divergent as the rotation rate
increased. This acted to reinforce the main cyclone but
weaken the part extending into the anticyclonic region,
associated with the shedding of small-scale vortices, and
doing so more and more as the rotation rate increased.
The main baroclinic wave was found to be barotropically
stable according to Bell’s [1989] criterion, but the insta-
bility was consistent with Kim’s [1989] observation that
baroclinic Rossby waves may be baroclinically unstable
if the internal Rossby deformation radius LD is much
smaller than a characteristic horizontal length scale L
representative of the large-scale wave, in this case com-
parable with the annular gap width b − a. In this flow
L � LD with increasing supercriticality (smaller values of
�) as the rotation rate increased (as LD ∝ 1/�), consis-
tent with an interpretation of the chaotic vortex-shedding
phenomenon discussed above as a secondary baroclinic
instability of the large-scale wave.
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1.3.5. Vacillating Waves and Wave-Zonal Flow
Interactions

Baroclinic waves in the regular wave regime may be
either steady (apart from a slow drift) or “vacillating”
(i.e., with a periodic or nearly periodic time dependence;
see Chapter 3 for a more detailed discussion). Labora-
tory observations of “amplitude vacillation” indicate that
(for fluids with Pr � 1) it occurs close to the upper sta-
bility threshold of its wave number m, around where a
transition from m to m − 1 is observed, at moderate-high
Taylor number. At lower values of Pr, however, it appears
that this transition sequence is reversed, with transitions,
for example using air as the working fluid (with Pr �
0.7), from steady waves into the vacillating regime as T is
increased [e.g., Randriamampianina et al., 2006; Castrejón-
Pita and Read, 2007]; see also Chapter 16 in this volume.
The “vacillating” state then comprises the periodic modu-
lation of both the amplitude and drift frequency of the
wave on a time scale ∼ 10 − 100 “days”. Figure 1.9
shows a sequence of streak images taken from a typical
m = 3 flow undergoing an amplitude vacillation cycle at
a level around 0.8d above the annulus base. This clearly
shows the wave amplitude growing, reaching a maximum
in amplitude in Figure 1.9d and then decaying before the
cycle repeats. The wave is modulated in both amplitude
and drift rate (phase speed) during the cycle, indicating a
nonlinear interaction with the background zonal flow.

More detailed diagnostics show periodic variations in
total heat transport and in potential energy exchanges
between the wave and zonal flow [see Pfeffer et al.,
1980; Hignett et al., 1985]. In particular variations in the
slope of the azimuthal mean isotherms (see Figure 1.10)
clearly show modulations in the potential energy stored
in the azimuthal mean flow. The zonal flow structure (see
Figure 1.10a and 1.10b) is seen to oscillate between a
single jet pair at minimum wave amplitude and two double
jets at maximum amplitude.

In this regard, it appears that nonlinear interactions
between the dominant wave and the azimuthal mean flow
are critically important for the phenomenon of amplitude
vacillation. In practice, however, it may not be easy to
distinguish this behavior from interference arising from
a quasi-linear superposition of two wave components
with the same azimuthal wave number and differing ver-
tical structure and drift frequencies ω1 and ω2. Apparent
“vacillation” then takes place at the difference frequency
of the two components |ω1 − ω2|. If the two compo-
nents cross-interact with the zonal flow, effects such as
phase locking and zonal flow modulation may occur,
reproducing several aspects of the observed flows. Some
observers claim to have identified this mechanism in mea-
surements in the laboratory [Lindzen et al., 1982], though
the more general relevance of this mechanism remains

controversial. However, other forms of nonlinear interfer-
ence vacillation, for example, involving the superposition
of two modes with differing (but adjacent) azimuthal wave
numbers but similar radial and vertical structures [Ohlsen
and Hart, 1989b], may also manifest themselves as peri-
odic modulations of baroclinic eddy variance while also
modulating the azimuthal mean flow through nonlinear
triad interactions of harmonics with the mean zonal flow.

Although the basic amplitude vacillation (AV) regime is
typically a quasi-periodic flow characterized by two inde-
pendent frequencies associated with (a) the azimuthal drift
of a monochromatic wave number pattern and (b) its peri-
odic modulation in amplitude, transitions to more chaotic
states have also been observed, still apparently within the
“regular” wave regime. These include transition sequences
via period-doubling bifurcations to chaotic amplitude
vacillations [Hart, 1985, 1986] and routes involving more
complex transitions directly to chaos from doubly peri-
odic “modulated” amplitude vacillation [Farmer et al.,
1982; Read et al., 1992; Früh and Read, 1997]. The result-
ing flows were apparently consistent with the interaction
of a relatively small number of spatial modes but dif-
fered in their basic azimuthal symmetry properties. Period
doubling was observed as a typical route to chaos in the
two-layer, open cylinder experiments of Hart [1985] and
Ohlsen and Hart [1989a]. This does not seem to be typi-
cal for thermal annulus experiments, however, which tend
to be dominated by higher wave number baroclinic modes
(m � 3). In the latter, the more typical route involves the
development of a third period through the emergence of
an additional wave mode that is not harmonically related
to the initial dominant wave [Read et al., 1992; Früh and
Read, 1997].

However, Young and Read [2008] did observe a sequence
of period doublings from a wave number m = 2AV flow
in a set of numerical simulations which led to chaotic
states consistent with the endpoint of a period-doubling
cascade over limited regions of parameter space.
Figure 1.11 shows two examples of such flows, illustrat-
ing chaotic ((a), (b)) and period 3 (( c), (d)) vacillations. In
this regime, the amplitude modulations vary in strength,
alternating between two intensities in the period 2 state
with successive doublings as T was increased until chaotic
vacillation ensued. The whole sequence shows a sequence
of bifurcations as successive period doublings lead to
chaotic behavior followed by an indication of period
3 “periodic windows”. Figure 1.12 illustrates such a
sequence at even higher values of T showing the maxi-
mum and minimum wave amplitudes of the equilibrated
baroclinic flow at various values of T while keeping �

at a fixed value of � � 1.75. This shows clear evidence
of a series of period-doubling transitions with chaotic
regions near points A, B, and D interspersed with regions
characterized by quasi-periodic vacillations.
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(a) (c)

(e)

(b)

(d) (f)

Figure 1.9. Typical horizontal flow fields (streak photographs) during an “amplitude vacillation” cycle of the rotating annulus in
the same system as in Figures 1.8–1.13. For color detail, please see color plate section.
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Figure 1.10. Results from numerical simulations of a baroclinic amplitude vacillation in a rotating annulus similar to that of
Hignett et al. [1985] showing (a) azimuthal mean azimuthal flow at maximum wave amplitude, (b) azimuthal mean azimuthal
flow at minimum wave amplitude, and (c ) azimuthal mean temperature fields at minimum (solid) and maximum (dashed) wave
amplitude during the vacillation cycle.
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Figure 1.11. Temperature m = 2 amplitude time series [(a) and ( c)] and delay coordinate reconstructions [(b) and (d)] in the
m = 2AV-d period-doubled amplitude vacillation regime, obtained by Young and Read [2008] in Boussinesq Navier-Stokes
simulations of rotating annulus flows. τ = 100 s in (b) and τ = 85 s in (d). Adapted from Young and Read [2008]. Copyright 2008,
with permission from Elsevier.

Such a sequence is strongly reminiscent of the period-
doubling route to chaos found in the two-layer experi-
ments of Hart [1985, 1986], who showed sequences of
period doublings from an m = 1AV flow at fixed Froude
number. This would therefore appear to be a generic route
to chaos in baroclinic wave flows at low enough wave
numbers that sideband instabilities do not dominate the
dynamics, and the main nonlinear interaction is between
a single wave and the zonal flow.

This kind of bifurcation sequence has also been
obtained in various studies invoking weakly nonlinear
baroclinic instability theory, such as by Pedlosky and
Frenzen [1980] for the two-layer model [see Klein, 1990, for
a review] and Weng et al. [1986] for the continuously strat-
ified Eady problem. These and other studies [e.g, see Ghil

and Childress, 1987] have shown that the endpoint of such
period-doubling sequences, even in very simple models
representing the interactions of single mixed baroclinic-
barotropic waves with a zonal flow, can be chaotic states
of low dimension. In certain limits, several workers have
shown that the single wave/zonal flow equilibration prob-
lem may reduce to a set of three coupled ODEs:

dX
dτ

= σ(Y − X), (1.15)

dY
dτ

= XZ + raX − Y , (1.16)

dZ
dτ

= XY − bZ, (1.17)
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Figure 1.12. Bifurcation diagram showing the maxima of m = 2
temperature amplitudes at successive values of T keeping �

constant at � � 1.75. Adapted from Young and Read [2008].
Copyright 2008 with permission from Elsevier.

where σ , ra, and b are constants, X is related to A(τ ), Y
is related to V(τ ) and Z ∼ F(A, V) [e.g., Brindley and
Moroz, 1980; Gibbon and McGuinness, 1980; Pedlosky and
Frenzen, 1980; Klein, 1990], which is the famous set of
equations that can result in the Lorenz attractor [Lorenz,
1963a]. In the presence of a “planetary vorticity gradient”
or β effect, the wave-zonal flow interaction problem may
reduce to a set analogous to the complex Lorenz equations
[e.g., Gibbon and McGuinness, 1980; Fowler et al., 1982;
Lovegrove et al., 2001, 2002]:

dX
dτ

= σ(Y − X), (1.18)

dY
dτ

= XZ + raX − aY , (1.19)

dZ
dτ

=
1
2
(X∗Y + XY∗) − bZ, (1.20)

where X and Y are now complex variables and ra and
a are complex parameters. The onset of chaos in these
models as parameters are smoothly varied is characterized
by a particular sequence of transitions typically involv-
ing either a sudden “snap-through” bifurcation from an
initially steady wave as dissipation is reduced or a period-
doubling cascade from an “amplitude vacillation” state as
dissipation is increased [Klein, 1990].

In the thermal annulus, the situation seems more com-
plicated, with the possibility of at least two distinct routes
to chaotic behavior. In one case, periodic AV gives way
to an azimuthally asymmetric, chaotically modulated vac-
illation in which two or more adjacent wave numbers
occur in irregular competition. The final “chaotic” state
appears to comprise at least three independent frequen-
cies together with a “noisy” component associated with
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Figure 1.13. Phase portraits [(a) and (c)] and Poincaré sections
[(b) and (d)] obtained from measurements of temperature in
a rotating annulus showing a transition from amplitude vac-
illation (top) to a chaotic “modulated amplitude vacillation”
(bottom). Adapted from Read et al. [1992] with permission.

the observed “chaos” [Read et al., 1992; Früh and Read,
1997]. The transition may be illustrated in reconstructed
phase portraits derived from time series of temperature
measurements, for example. Examples are illustrated in
Figure 1.13 from the experiments reported by Read et al.
[1992]. The other main route may be via the period-
doubling sequence found in model simulations by Young
and Read [2008] although, as mentioned above, this route
has so far proved elusive in real experiments.

1.3.6. Structural Vacillation and Transition
to Geostrophic Turbulence

“Structural vacillation” (also known as “shape” or
“tilted-trough vacillation” or SV [White and Koschmieder,
1981; Buzyna et al., 1984]) occurs as the irregular flow
transition is approached and, in its purest expression, is
characterized by a nearly periodic, horizontal tilting of
the radial axes of wave peaks and troughs [Weng et al.,
1986; Weng and Barcilon, 1987]. However, in practice it
takes many different forms, depending upon a variety of
factors, including how close the dominant wave number
m may be to Hide’s maximum stable wave number mmax
[cf. equation (1.13)]. This becomes more pronounced as
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� is increased, until the regular flow pattern breaks down
into fully irregular flow [Pfeffer et al., 1980; Buzyna et al.,
1984].

In its “purest” form, SV has been observed as the peri-
odic tilting back and forth of the main wave troughs. In
association with this observation, the lateral distribution
of eddy energy within the wave was observed to shift back
and forth between the inner and outer sides of the chan-
nel. This observation led some to suggest a kinematic form
for the wave as the superposition of dominant waves with
the same zonal wave number and with lateral structures

φ1(y) = A1 sin πy, (1.21)

φ2(y) = A2 sin 2 πy, (1.22)

both propagating azimuthally at different phase speeds.
This type of behavior has been reproduced in a class

of simple, low-order numerical models in which a small
number of wave modes are allowed to interact through
mutual advection in a quasi-geostrophic model. Weng
and Barcilon [1987], for example, followed a much ear-
lier approach pioneered by Lorenz [1963b] and applied it
to a nonlinear version of the Eady model including the
first two lateral modes (cf. equations (1.21) and (1.22))
to obtain solutions in which eddy energy oscillated in y
through nonlinear interference between the two gravest y
modes with the same x wave number (e.g., see Figure 1.14).

In practice, however, observed ‘structural vacillations’
are often more complicated than this picture would sug-
gest, for example, with transient small-scale features grow-
ing and decaying within a large-scale pattern dominated
by a single azimuthal wave number. Oscillations often
appear to be strongly intermittent and irregular, and the
phenomenon suggests the growth of small-scale insta-
bilities within the large-scale pattern (either barotropic
or baroclinic) that do not reach sufficient amplitude to
disrupt the main pattern. Read et al. [1992] found that
the onset of SV occurs quite suddenly at a well-defined
point in parameter space, again with evidence of intermit-
tency in time. The irregular character of the oscillations
becomes steadily more apparent as � is increased, and
the large-scale pattern becomes gradually more distorted
until it begins to break up into irregular flow. This does
not seem to be readily consistent with notions of chaos
in the formal sense, and its precise nature is still not fully
understood (see Read et al. [1992] for further discussion).
SV is frequently regarded as an intermediate state prior
to the full onset of irregular wave flow or “geostrophic
turbulence.”

At the highest rotation rates, the wave number spectrum
is observed to fill up to become a broadband contin-
uum, though a limited band of wave numbers still tends
to dominate the spectrum. The most detailed laboratory
measurements of the transition to irregular flow with
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Figure 1.14. Stream function fields from a wave number 6 flow
at mid-depth in the x−y plane of a zonal channel (where x is the
zonal direction and y the lateral or meridional direction) during
a structural vacillation cycle, as obtained in a low-order quasi-
geostrophic model. Adapted from Weng and Barcilon [1987]
with permission of John Wiley & Sons, Inc.

increasing � were carried out by Buzyna et al. [1984]
[see also Pfeffer et al., 1980] and Hide et al. [1977], in
the former case using the large annulus at Florida State
University. Both studies showed the gradual broadening
of the wave number spectrum and increasing significance
of nonharmonically related azimuthal components as the
fully developed irregular regime was entered (some exam-
ples from the study by Buzyna et al. [1984] are shown
in Figure 1.15). At extreme parameter values, the time-
averaged spectrum does not display strong peaks at any
particular individual wave number but appears as a broad
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Figure 1.15. Azimuthal wave number power spectra obtained from measurements of temperature in a rotating annulus as � is
increased through the regular wave regime toward fully developed “geostrophic turbulence”. Experiments were carried out at the
following points in (�,T ) parameter space: (a) 1.44, 1.30×108, (b) 0.344, 5.40×108, 0.230, 8.07×108, and (d) 0.086, 2.16×109.
Adapted from Buzyna et al. [1984] with permission.

continuum with maximum power over a range of rela-
tively low wave numbers dominated by the main baro-
clinic wave activity with a characteristic quasi-power law
decay toward the highest wave numbers that commonly
approached k−3 − k−4 [Hide et al., 1977; Pfeffer et al.,
1980; Buzyna et al., 1984] and even steeper in some cases
[Pfeffer et al., 1980; Buzyna et al., 1984]. Simple heuristic
arguments based on the Kolmogorov-Kraichnan theory
[Kraichnan, 1967, 1971] predicts energies to decay as k−3

at high wave numbers in an enstrophy-dominated iner-
tial range, but this is not the only possible explanation.
The (possibly transient) formation of sharp fronts and
vorticity filaments within geostrophically turbulent flows
may lead to a kinetic energy spectrum with a slope as
steep as k−4 [e.g., Saffman, 1971; Brachet et al., 1988]. The
formation of persistent, stable vortex structures within
geostrophically turbulent flows can also perturb the sim-
ple Kolmogorov-Kraichnan scaling arguments by intro-
ducing some spatiotemporal intermittency to the flow.
This effect can also apparently lead to spectral slopes of
k−3 − k−4 or even steeper [e.g., Basdevant et al., 1981;
McWilliams, 1984], although the presence of imposed
vorticity gradients (e.g., due to a β effect or topography)
may weaken such eddies and the flow reverts toward a k−3

energy spectrum.
A further question regarding these highly turbulent

flows with strong background rotation is whether they
also exhibit any evidence for an inverse energy cas-
cading inertial range. Early theoretical work and mod-
els [e.g., Salmon, 1978; Rhines, 1979; Salmon, 1980]
suggested that such inverse cascades would be rela-
tively common in stratified, quasi-geostrophic flows, with
energy being injected into the barotropic mode at around
the internal Rossby deformation radius via baroclinic

self-interactions, leading to a K−5/3
3 inertial range (where

K3 is the three-dimensional total wave number) if a suffi-
cient scale separation exists between energy injection and
large-scale dissipation and forcing. The existence or other-
wise of an inverse energy cascade in Earth’s atmosphere or
oceans continues to be an area of active controversy, with
recent work suggesting that energy cascades upscale from
around the first internal baroclinic deformation radius
toward larger scales in the oceans [Scott and Wang, 2005;
Scott and Arbic, 2007], though without a k−5/3 inertial
range apparent (at least in the sea surface height signature
in satellite altimetric measurements). The development
of coherent structures at large scales in the atmosphere,
however, has been suggested to lead to a suppression of
spectrally local nonlinear interactions and consequently
the suppression of any significant inverse energy cascade
at scales larger than the main energy-containing baroclinic
scales in the atmosphere [e.g. Schneider and Walker, 2006;
O’Gorman and Schneider, 2007].

Such issues were not considered in earlier experimen-
tal studies [Hide et al., 1977; Pfeffer et al., 1980; Buzyna
et al., 1984; Bastin and Read, 1997, 1998], which only pre-
sented and discussed basic temperature variance spectra
and synoptic structures from their measurements. As is
evident from Figure 1.15, such spectra show little obvi-
ous evidence of the K−5/3

3 inertial range that might indi-
cate an energy-dominated cascade at low wave numbers.
Wordsworth et al. [2008] did explore aspects of spectral
energy transfers in a set of rotating annulus experiments,
both with and without sloping horizontal boundaries,
even though such experiments also showed no obvious
sign of the classical K−5/3

3 inertial range. Nevertheless,
these experiments did show evidence for a weak, spec-
trally local (eddy-eddy) upscale kinetic energy cascade in
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the presence of sloping boundaries and a much stronger
direct (spectrally nonlocal) upscale energy transfer into
the zonally symmetric component of the flow, in extreme
cases deforming the large-scale baroclinic zonal flow into
a pattern of multiple parallel jets and baroclinic zones.
Such patterns had been anticipated in several earlier stud-
ies [Mason, 1975; Bastin and Read, 1997, 1998], which
also noted the tendency to form flows with complex radial
structures, but these did not examine the energy exchanges
in such detail.

However, this whole subject area relating to energy
exchanges in geostrophically turbulent or chaotic flows
is substantially underexplored and deserves further inten-
sive study in future research. The respective roles of baro-
clinic and barotropic energy exchanges (both kinetic and
potential) remain uncertain in the general case, and how
such roles scale and vary with key control parameters
is virtually unknown. The study by Wordsworth et al.
[2008] only considered quasi-barotropic energy exchanges
in detail in the cases they were able to measure, though
they attempted to infer some aspects of the baroclinic-
barotropic exchanges indirectly. But a more detailed study
utilizing combinations of velocity and temperature mea-
surements with good spatial coverage and high spatial
resolution are really needed to elucidate some of the
most challenging outstanding questions, that are currently
major issues for understanding the global circulation of
both the atmosphere and oceans [cf Schneider and Walker,
2006; Zurita-Gotor and Lindzen, 2007; Jansen and Ferrari,
2012].

1.4. HEAT TRANSPORT AND ROLE
OF BAROCLINIC WAVES

It is often asserted [e.g., Hide and Mason, 1975] that
baroclinic annulus waves develop from a baroclinically
unstable background state and serve primarily to transfer
heat upward and horizontally from hot regions toward
cooler ones. But heat transfer within the baroclinic rotat-
ing annulus is actually significantly more complicated
than this would suggest.

If the annulus were filled with a conducting solid instead
of a fluid, heat would only be transferred by molecular
conduction. Hence, with isothermal vertical boundaries
the equilibrated isotherms would lie on cylindrical sur-
faces coaxial with the axis of symmetry. Such a config-
uration in a fluid would be very unstable, however, since
large amounts of potential energy would be stored com-
pared with the lowest energy state that could be obtained
by an adiabatic rearrangement of the fluid to place the
denser fluid as low as possible (and vice versa). Where the
boundary temperatures are actively maintained, however,

the complete adiabatic rearrangement of the fluid to
its lowest potential energy state is not sustainable but
results in a residual buoyancy-driven overturning circu-
lation, mainly confined to thin boundary layers adjacent
to the vertical boundaries (provided the Rayleigh num-
ber is large enough; see below). Figure 1.16 shows an
example from a numerical simulation of the equilibrated
flow in a nonrotating fluid annulus. This clearly shows
the temperature field assuming a bottom-heavy configura-
tion away from the vertical boundaries but with complex
thermal structure adjacent to the sidewalls as the tempera-
ture adjusts to the isothermal boundary conditions within
complex sidewall boundary layers. Some of this struc-
ture is associated with the strong overturning circulation
within the sidewall boundary layers, where conductive
heating/cooling is balanced by (mainly vertical) advection
of heat, with a return flow in the (quasi-inviscid) inte-
rior. The interior flow redistributes hot and cold fluid
until it reaches a state of minimum potential energy, i.e.,
with as much as possible of the cold dense fluid at the
bottom of the cavity. Hence, isotherms in the interior
become virtually horizontal and stably stratified in the
vertical, adjusting to become vertical in thin conduction-
dominated boundary layers adjacent to the sidewalls. In
this state, advective heat transport (by laminar flow) is
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Figure 1.16. Numerical simulation of the equilibrated axisym-
metric flow in a rotating annulus experiment with sidewalls
maintained at different temperatures but with � = 0: (a)
stream function for the meridional circulation in the (r, z) plane;
(b) corresponding temperature field with thin thermal boundary
layers adjacent to each sidewall.
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Figure 1.17. Cross sections in the (r, z) plane of (a) azimuthal velocity (mm/s), (b) temperature (◦C), ( c) radial gradient of QG
potential vorticity (s−1) (computed by Bell and White [1988]), and (d) meridional stream function (cm2/s1) in the axisymmetric
regime of a rotating annulus subject to differential heating at the sidewalls. (Adapted from Read [2003] with permission.)

apparently as efficient as possible as measured by the
nondimensional Nusselt (N ) or Péclet (Pe) numbers

N =
Total heat transport

Heat transport by conduction alone
, (1.23)

Pe =
Advective heat transport

Heat transport by conduction alone
. (1.24)

When the system is rotated, Coriolis accelerations begin
to influence the circulation, deflecting horizontal radial
motion into the azimuthal direction. The axisymmetric
flow at low values of � is therefore similar to the non-
rotating case, except (a) an azimuthal component of flow
is induced, producing jets antisymmetric about middepth
(for identical upper and lower boundary conditions), pro-
grade at the top (where radial flow is inward) and retro-
grade below (where radial flow is outward), and (b) radial
flow becomes largely confined to Ekman layers adjacent to
the horizontal boundaries (for � sufficiently large). When
Coriolis accelerations dominate the interior flow, any O(1)
radial flow has to be geostrophic, requiring an azimuthal
pressure gradient. Such a gradient cannot occur in an
axisymmetric circulation unless a rigid meridional barrier
is present, so radial flow strong enough to carry signifi-
cant amounts of heat energy across the annulus becomes

largely confined to the Ekman layers. This is clearly seen in
the temperature and stream function fields of the rotating,
axisymmetric flow illustrated in Figure 1.17a and 1.17d.
Meanwhile, the azimuthal flow assumes a form where
geostrophic balance applies except in the Ekman layers,
within which viscous accelerations dominate.

Since the radial flow becomes confined to Ekman lay-
ers when � �= 0, the efficiency of advective heat trans-
port is governed primarily by the mass transport, which
can be accommodated within an Ekman layer. For a
given geostrophic zonal flow in the interior, the advec-
tive Ekman transport is proportional to the depth of
the Ekman layer (i.e., proportional to VE1/2, where E
is the Ekman number and V the azimuthal velocity
scale; see below). Since E is inversely proportional to �,
the efficiency of advective heat transport must decrease
with � given a constant �T , V is proportional to
�−1, and Ekman transport is proportional to �−1E1/2 ∝
�−3/2. Thus, as � increases, advective heat transport
must decrease. Such a decrease is clearly apparent in
Figure 1.18, which shows a compilation of both labora-
tory measurements of Nusselt number and from numeri-
cal simulations [Read, 2003; Pérez, 2006]. The variation of
Nusselt number N in a pure axisymmetric flow in which
baroclinic waves are suppressed is indicated by diamonds,
which broadly confirm the decay as �−3/2, though note
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that this scaling applies more precisely to the Péclet num-
ber Pe (= N − 1; see equation (1.24)), which decays more
rapidly with � toward zero than N (which decays toward
N = 1). Since conductive heat transport is always present
and is unaffected by rotation, the resultant thermal field
becomes increasingly dominated by conduction. Hence,
the isotherm structure will tend toward the vertical align-
ment characteristic of the conductive state as � increases.
It is reasonable, therefore, for waves to develop in such a
flow provided they are able to transfer heat radially in the
interior, which is possible in a geostrophically balanced
rotating fluid since waves are associated with a periodically
varying azimuthal pressure gradient to balance a radial
geostrophic flow.

Laboratory experiments show that such wavelike distur-
bances with these properties will frequently develop under
many circumstances, with the primary role of transferring
heat and releasing “available”potential energy. When such
waves are present, experiments have consistently demon-
strated that they increase the effectiveness of advective
heat transfer quite significantly. The experimental mea-
surements and simulations represented in Figure 1.18
show this effect very clearly, more or less maintaining
the total Nusselt number of the whole system at a value
close to its nonrotating value. Such an effect has been
noted since the early work of Bowden [1961] and Bowden
and Eden [1965], though a fully quantitative, theoretical
understanding of this has remained elusive.
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Figure 1.18. Experimental and numerically simulated total
heat transport (Nusselt number) in a rotating annulus experi-
ment using data from Read [2003] and Pérez [2006]. Both 2D
and 3D models were used for the numerical simulations. (See
key inside the figure for a description of each measurement.)

1.4.1. Eddy Heat Transfer in Oceans and Atmospheres

Note that the above arguments will apply in a qualitative
sense to a planetary atmosphere save that the state to which
the thermal structure relaxes in the absence of (large-
scale) fluid motion is one not of conductive equilibrium
but of radiative (or radiative-convective) equilibrium [e.g.,
Pierrehumbert, 2010]. This would suggest that parameters
measuring the efficiency of atmospheric heat transport,
such as the Nusselt number N , need to be redefined, for
example, with respect to a radiative-convective equilib-
rium state rather than a pure conductive one. In the case of
Earth, pure radiative-convective equilibrium would result
in a temperature contrast between equator and poles of
∼150 K, instead of ∼60 K observed on average [e.g.,
Andrews et al., 1987], indicating the dominant role of
dynamical advective heat transport in the atmosphere.
Similar considerations may apply in the oceans, for which
parameterization of baroclinic eddy transports are of par-
ticular importance. This is because the scales of baroclinic
instability are so much smaller than the domain scale of an
ocean basin that they are extremely difficult and/or expen-
sive to resolve adequately in ocean circulation numeri-
cal models.

Various approaches toward the parameterization of
eddy transports have been developed over many years
for this purpose [e.g., Plumb and Mahlman, 1987; Gent
and McWilliams, 1990; Gent et al., 1995; Treguier et al.,
1997; Killworth, 1997; Visbeck et al., 1997; Marshall and
Adcroft, 2010]. A major advance in the development of
such parameterizations that forms the basis of many con-
temporary schemes in current use in ocean models derives
from the work of Gent and McWilliams [1990] and Gent
et al. [1995]. Here an “eddy-induced” or “bolus” velocity
is introduced that advects temperature and other tracers in
such a manner as to flatten density surfaces. The original
scheme proposed by Gent and McWilliams [1990] derived
such an eddy-induced velocity from a parameterization
of buoyancy fluxes that were assumed to act diffusively
down- gradient with respect to the ambient (e.g., zonal
mean) buoyancy field in the form (suitable for a zonally
reentrant domain):

u∗ = − ∂

∂z

(
u′ρ′

∂ρ/∂z

)
(1.25)

= −∂χ∗
GM

∂z
, (1.26)

w∗ =
∂

∂y

(
u′ρ′

∂ρ/∂z

)
(1.27)

=
∂χ∗

GM

∂y
. (1.28)
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Here the term in parentheses on the right-hand sides
of each of equations (1.25) and (1.27) is effectively the
stream function χ∗

GM for the eddy-induced azimuthal
mean flow (u∗, w∗) in the meridional (r, z) plane. Gent and
McWilliams [1990] proposed that the buoyancy flux in
this definition of χ∗ be parameterized as a down-gradient
diffusion of zonallyaveraged buoyancy

χ∗
GM =

(
u′ρ′

∂ρ/∂z

)
= −

(
K∂ρ/∂y

∂ρ/∂z

)
, (1.29)

whereK is a suitably defined eddy diffusion coefficient that
needs to be completed with a suitable closure model. The
latter is commonly assumed to take the general form

K = αLeddyUeddy, (1.30)

where Leddy and Ueddy are characteristic scales for eddy
length and velocity scales and α is a dimensionless
constant, found empirically to require a value O(10−2)
[e.g., Visbeck et al., 1997; Marshall and Adcroft, 2010].

There remains significant uncertainty, however, as
to the physical basis for choosing Leddy and Ueddy.
Leddy represents a prescribed “mixing length”, sug-
gestions for which have included either the so-called-
Rhines scale LRhines = (Urms/β)1/2 [Larichev and Held,
1995; Treguier et al., 1997], the width of the baro-
clinic zone [Green, 1970; Visbeck et al., 1997], or
the Rossby deformation radius [Stone, 1972]. Ueddy
has been taken variously as either a “typical” ther-
mal wind scale related to the zonal mean horizon-
tal thermal gradient [Green, 1970] or setting Ueddy ∼
Leddy/τeddy, where τeddy is a “typical” eddy overturning
time scale that might be derived, for example, from lin-
ear baroclinic instability theory [Stone, 1972; Haine and
Marshall, 1998] or weakly nonlinear theory [Pfeffer and
Barcilon, 1978; Read, 2003]. In addition, problems may
arise if a parameterization scheme fails to respect key
conservation principles, especially energy and potential
vorticity [e.g., Marshall and Adcroft, 2010]. The parame-
terization of the eddy-driven “bolus” velocity from zonal
mean fields is another controversial issue since it is not
always clear that the horizontal eddy buoyancy flux nec-
essarily acts diffusively down gradient with respect to the
zonal mean buoyancy field [e.g., Treguier et al., 1997;
Marshall and Adcroft, 2010]. Treguier et al. [1997] and
Killworth [1997] suggested an alternative approach based
on assuming that potential vorticity is more generally dif-
fused down gradient than pure buoyancy such that the
eddy-induced velocity (u∗, w∗) is defined as

u∗
THL = − ∂

∂z

(
u′ρ′

∂ρ/∂z

)
(1.31)

� − u′q′
f

� K(y, z)∂q/∂r
f

(1.32)

= −∂χ∗
THL

∂z
, (1.33)

w∗
THL =

∂χ∗
THL

∂y
, (1.34)

where Kq(y, z) is again a suitably defined eddy diffu-
sion coefficient, this time for potential vorticity q, and is
assumed here to be variable in space.

A complete understanding of all of these issues there-
fore remains elusive, and there remains a continuing prob-
lem of how to verify any scheme of parameterization
with the desired degree of rigor. In this respect, labora-
tory experiments such as the rotating, thermally driven
annulus ought to have something important to contribute.
Experimental techniques have been available for some
time to measure both the total heat transport across the
annular cavity (e.g., via calorimetric methods to deter-
mine the total heat transport across a given sidewall
boundary) and the interior eddy variances and fluxes of
heat, momentum, and vorticity associated with baroclinic
waves. The quantitative interpretation of these measure-
ments, however, requires a clear understanding of the
various mechanisms at work within rotating annulus cir-
culations to transport heat energy across the annular
channel. These include direct thermal conduction and
direct overturning circulations (mainly in boundary lay-
ers) as well as macroturbulent transports by baroclinic
eddies themselves. In subsequent sections, therefore, we
examine and review the main boundary layer and eddy
processes that contribute to heat transport in the annu-
lus, culminating in some preliminary attempts to apply
an analogue of ocean baroclinic eddy parameterization
schemes within an axisymmetric numerical annulus model
in which baroclinic instability is artificially suppressed.

1.4.2. Regimes of Axisymmetric Flow: Heat and
Momentum Transport

Although the description of the axisymmetric flow in
the introduction to this section gave a plausible explana-
tion for the observed axisymmetric and wave regimes in
the annulus, it is a highly simplified discussion that glosses
over more subtle aspects of the problem. In this section,
we take a more quantitative view of the axisymmetric flow
in the annulus to put the above discussion onto a stronger
theoretical footing and as an illustration of the use of scale
analysis and boundary layer theory.

Early analyses [McIntyre, 1968; Sugata and Yoden,
1992] followed the scaling approach developed by Gill
[1966], which Hignett et al. [1981] and Hignett [1982] fur-
ther extended for an incompressible Boussinesq fluid in
a rotating annulus of vanishingly small relative curvature
(2[b−a]/[b+a] � 1, so one may use Cartesian geometry)
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and neglected centrifugal accelerations. It is convenient to
define a meridional stream function χ such that

u =
∂χ

∂z
, v = −∂χ

∂x
. (1.35)

The steady-state equations for momentum, continuity,
and heat then reduce to a zonal momentum equation

ν∇2v = f
∂χ

∂z
+ J(v, χ), (1.36)

where f = 2� and the Jacobian is defined as

J(c, d) =
∂c
∂x

∂d
∂z

− ∂c
∂z

∂d
∂x

; (1.37)

the azimuthal vorticity equation is

ν∇4χ = gα
∂T
∂x

− f
∂v
∂z

− J(χ , ∇2χ), (1.38)

where T is the temperature and α the volumetric expan-
sion coefficient and vorticity ζ is defined as

ζ =
∂u
∂z

− ∂v
∂x

= ∇2χ ; (1.39)

and the temperature equation is

κ∇2T + J(χ , T) = 0. (1.40)

We consider a container of aspect ratio ε defined by

ε =
H
L

(1.41)

(where H and L are the vertical and horizontal length
scales, respectively, of the domain) and apply boundary
conditions

χ =
∂χ

∂z
= v =

∂T
∂z

= 0, z = 0, H, (1.42)

χ =
∂χ

∂x
= v = T − T0 = 0, x = −L/2, +L/2. (1.43)

We make use of dimensionless parameters such as the
Ekman number E defined by

E =
ν

�H2 , (1.44)

the Prandtl number Pr(= σ/κ), and the Rayleigh number

Ra =
gα�TL3

κν
. (1.45)

It is also convenient to define Nusselt (N ) and Péclet
(Pe) numbers as measuring the ratios of total heat trans-
port and advective heat transport, respectively, to that due
to conduction, which we take to be

N =
�

κ
+ 1 = Pe + 1 (1.46)

(where � is a characteristic scale for χ ). We then carry
out a scale analysis with the aim of deriving the dominant

dynamical balances in the interior and principal bound-
ary layers and obtain the dependence of N and the zonal
velocity scale on external parameters over as wide a range
as possible. Initial assumptions are restricted as follows:

(i) Aspect ratio ε is not too different from unity.
(ii) Single thickness scales are assumed, � for the side

and h for the horizontal boundary layers.
(iii) Outside the boundary layers there is a distinct inte-

rior flow with length scales L and H such that (�, h) �
(L, H).
(iv) Prandtl number Pr � 1.

1.4.2.1. Nonrotating Problem. We assume the flow to
comprise an advective interior and thin sidewall boundary
layers and nondimensionalize in the thin sidewall layer of
thickness � using

�x = ��x∗, �z = H�z∗, T − To = �TT∗,

χ = �χ∗. (1.47)

Thus equation (1.40) becomes

∇2T∗ +
��

κH
J(χ∗, T∗). (1.48)

For advective/diffusive balance, we require

� =
κH
�

. (1.49)

For this case, (1.38) becomes

∇4χ∗ = Ra
(

�

L

)4
∂T∗

∂x∗ − 1
Pr

J(χ∗, ∇2χ∗). (1.50)

If Pr � 1, we obtain a buoyancy/viscous balance in the
sidewall boundary layer, implying that

� = Ra−1/4ε1/4L, (1.51)

which was the result obtained by Read [1992] [see also
Fein, 1978; Friedlander, 1980] for the principal boundary
layer scale when N2Pr/f 2 � E2/3. In this case, the Nusselt
or Péclet number is obtained from equation (1.49) as

N − 1 = Pe =
�

κ
= O

[
Ra1/4ε3/4

]
. (1.52)

1.4.2.2. Effects of Rotation. In considering the relative
impact of rotation on the circulation, it seems intuitive
that the Ekman layer will be of importance. It is there-
fore convenient to follow an approach due to Hignett et al.
[1981] and recently applied to good effect in the context
of convection in rotating systems by King et al. [2009] and
King et al. [2012] in defining a parameter P measuring the
(square of the) ratio of the thickness of the Ekman layer
and sidewall buoyancy layer. Thus

P = Ra−1/2E−1, (1.53)
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O(Ra–3/4)

O(Ra–1/4)
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Figure 1.19. Schematic diagram showing the dependence
of derived parameters on internal parameters in the various
axisymmetric regimes defined in terms of P assuming ε = O(1).
Quantities represented are VL/(κRa1/2) (solid line); �/(κRa1/4)

(dashed line); γ (dash-dotted line); �/L (dotted line), and Ro
(dash-crossed line). (Adapted from Read [1986] with permis-
sion).

(assuming hereafter for simplicity that ε = 1) which is pro-
portional to �. Based on a consideration of the full range
of P , we can effectively identify up to six distinct regimes
of axisymmetric flow (see also Figure 1.19):

(i) No rotation, P = 0.
(ii) Very weak rotation, 0 � P � Pr−2.

(iii) Weak rotation, Pr−2 � P � 1.
(iv) Moderate rotation, P � 1.
(v) Strong rotation, 1 � P � Ra1/6.

(vi) Very strong rotation, P � Ra1/6.
We now briefly outline their characteristics:

(i) No rotation: This has already been discussed above
in Section 1.4.2.1, with consequent scales for � and Pe.
Note that we can obtain an estimate of isotherm slope
γ = �Th/�T (where �Th is the horizontal temper-
ature contrast) from a consideration of the balances
in the zonal vorticity equation. Provided Pr � 1, a
buoyancy/viscous balance holds in the interior, so that

gα ∂T/∂x = O(gα�Tγ /L) (1.54)

= ν∇4χ(= O(ν�L−4). (1.55)

Hence γ < Ra−3/4 � 1 and isotherms are quasi-
horizontal.

(ii) Very weak rotation: When f is no longer zero,
(1.36) is coupled to (1.38) and gyroscopic torques render
v non-zero. We obtain an estimate for the zonal veloc-
ity scale V by scaling (1.38) in the Ekman layer using its
characteristic depth h = E1/2L. Hence, (1.36) becomes

PrP1/2∇2v∗ =
fL
V

∂χ∗

∂z∗ + J(v∗, χ∗). (1.56)

Thus, for P � Pr−2 we have an inertial/Coriolis balance
in the Ekman layer (i.e., there is no proper Ekman layer),
and the entire flow is characterized by local conserva-
tion of angular momentum [hence V = O(fL), which
is proportional to P ; see Figure 1.19].
(iii) Weak rotation: For P � Pr−2, the viscous

term in (1.56) becomes dominant in the Ekman layer
(i.e., normal Ekman layers exist), thus rescaling V to
O(κRa1/2P1/2/L). This balance extends into the inte-
rior, while the previous balance in the sidewall layer is
unchanged from regime (i). Despite the new scaling for
V , the dominant balances (and scaling for Pe) in (1.40)
also remain unchanged from (i). The rescaling of V does,
however, affect the interior balance in the azimuthal vor-
ticity equation, from a buoyancy/viscous balance to a
buoyancy/Coriolis balance characteristic of the “thermal
wind” balance typical of geostrophic flow. The reason
why the (now geostrophic) scale for V does not go as
�−1 typical of a thermal wind scale is because γ is now
increasing rapidly with � (γ = O(P3/2)), which more
than outweighs the P−1 dependence of V for constant
γ . Note also the zonal Rossby number Ro = V/fL =
O(Pr−1P−1/2 and is therefore �1 (see Figure 1.19).
(iv) Moderate rotation: In this regime, the Ekman

layer thickness is comparable with that of the sidewall
buoyancy layer and so is expected to begin to exert a
strong influence on the meridional circulation and trans-
port. Anticipating that V will eventually tend toward
the thermal wind scale O(P−1), this range of P delin-
eates the regime where V reaches a maximum Vo =
O(κRa1/2/L). If the Ekman layer exercises dominant
control over the radial mass transport, � will be rescaled
to O(VoLE1/2) = O(κRa1/4P−1/2), implying a slow
broadening of the sidewall advective/diffusive boundary
layer from � to �P1/2.

(v) Strong rotation: As P is increased beyond 1, the
Ekman layers fully dominate the meridional circulation.
By this point, the isotherm slope γ has become O(1)

and so cannot increase any further. Then V rescales to
the familiar thermal wind scale V = O(κRa1/2L−1P−1).
The expansion of the advective/diffusive sidewall layer
accelerates to �′ = O(Ra−1/4LP3/2), extending the influ-
ence of thermal diffusion further into the interior. The
heat transport Pe is rescaled to O(Ra1/4P−3/2), though
it remains � 1 (see Figure 1.19).
(vi) Very strong rotation: In this final regime, the dif-

fusive thermal sidewall layer expands to fill the interior
and no separate thermal boundary layer and interior
can be distinguished (though Stewartson E1/3 layers may
exist in this limit). The critical value for P distinguishing
regimes (v) and (vi) simply arises from equating �′ [see
(v) above] with L so that P > Ra1/6. All other balances
remain unchanged from (v), i.e., the geostrophic interior
and strong Ekman layers. Heat transport in this regime,
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however, is dominated by thermal conduction so Pe → 0
and N → 1.

1.4.2.3. Experimental Verification. The axisymmetric
regimes discussed in Section 1.4.2.2 are capable (at least in
principle) of existing in real systems given an experimen-
tal system operating in an appropriate parameter range.
In practice, however, regimes (iv) – (vi) are not usually
obtainable because of the development of nonaxisym-
metric baroclinic waves within regime (iv) and beyond.
This is consistent with the notion that baroclinic waves
develop when Ekman layers begin to inhibit meridional
heat transport.

An exception was provided by Hignett [1982], who made
heat transport measurements in a rotating annulus with
parallel sloping upper and lower endwalls that sloped
strongly in the same sense as the isotherms. Such a con-
figuration tends to inhibit the development of baroclinic
waves (by constraining fluid trajectories away from the
“wedge of instability”; [Hide and Mason, 1975; Mason,
1975]). As a result, Hignett was able to show the effect of
almost the full range of behavior from zero to very strong
rotation on the total heat transport by axisymmetric flow
in a rotating annulus. His results are shown in Figure 1.20.
The dependence of N and V on P in a rotating annulus
subject to internal heating was also investigated by Read
[1986], that also confirmed the above analysis provided the
definition of N was modified appropriately to measure
heat transport efficiency in terms of the temperature con-
trast obtained with a given heat flux; the results are shown
in Figure 1.21. These clearly show the linear scaling of
V with P in the weak rotation regime with a transition
toward P1/2 as the moderate rotation regime is entered
while the Péclet number also begins to reduce toward a
P−1/2 dependence in the moderate rotation regime.
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Figure 1.20. Scaled measurements of total heat transport in the
axisymmetric regime of a rotating annulus as a function of P.
Adapted from Hignett [1982] by permission of Taylor & Francis
Ltd., http://www.tandf.co.uk/journals.
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Figure 1.21. Schematic dependence of zonal (azimuthal)
velocity scale on P in a rotating annulus subject to internal
heating. Adapted from Read [1986] with permission.

1.4.3. Quantifying Baroclinic Eddy Transport

When baroclinic waves are not suppressed, as shown
in Figure 1.18, heat transport evidently remains close to
its nonrotating value as a result of eddy-induced trans-
ports. Read [2003] suggested that the latter can be viewed
as adding to and enhancing the heat transport occurring
in the axisymmetric boundary layer circulation, and the
strength of this eddy-induced transport can therefore be
diagnosed directly from measurements or simulations of
total heat transport as the difference in Nusselt number
between that of the fully three-dimensional flow and N
obtained in a purely axisymmetric flow under the same
experimental conditions. Read [2003] diagnosed this from
a combination of numerical simulations of axisymmet-
ric flows and experimental measurements. The results are
shown in Figure 1.22, (a) as a function of both � and
boundary layer ratio P and (b) as a function of the
“supercriticality” of the flow defined with respect to a
supercritical rotational Froude number Fs, defined as

Fs = F − F0m =
1
�

− 1
�0m

. (1.57)

Here F is defined as F = 1/� and �0m = 1/F0m
represents the critical values of � and F for the onset of
baroclinic instability of azimuthal wave number m.

In this figure, the difference in Nusselt number repre-
sents an additional or “excess” Péclet number Pexs due
to the presence of baroclinic waves. The effectiveness of
baroclinic eddy heat transport grows rapidly with � from
the first onset of baroclinic instability, rising to a value
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Figure 1.22. Experimental measurements of dimensionless integrated heat transport (excess Péclet number) attributable to baro-
clinic eddies in a rotating annulus experiment derived from data of Read [2003] and presented (a) as a function of � and P and
(b) as a function of “supercritical” Froude number Fs (see text). Pexs may be compared with the nonrotating total Péclet number
of around 10. Open circles are for m = 2 flows, filled triangles for m = 3, and open squares for m = 4 dominated flows. For color
detail, please see color plate section.

(at least in the experiments discussed by Read [2003]) of
around 6–7 at around � = 3 rad/s, after which Pexs levels
off and may even start to decrease at the highest values
of �. This would appear to indicate that eddy-induced
heat transport tends to saturate at a finite level once the
instability becomes fully supercritical. Such an effect is
also evident in Figure 1.22b, which shows the same data
plotted against a measure of baroclinic supercriticality in
terms of Fs. This clearly indicates an initial dependence of
Pexs close to F1/2

s for Fs � O(1) (indicated by the dashed
line in Figure 1.22b) but with a weaker dependence as
Fs increases further. However, measurements penetrating
further into the supercritical (irregular) regime would be
desirable to confirm this saturation effect. The numerical
simulations of Pérez [2006]; and Pérez et al. [2010] would
seem to suggest that Pexs may continue to increase weakly
as P is increased toward 10 (so the axisymmetric share of
heat transport becomes relatively small), but these high �

simulations probably had insufficient resolution to handle
the increasingly turbulent wave flows at these high rotation
rates, so the values of N may not represent accurately the
heat transport of the real fluid system.

1.4.4. Testing Local Closures for Baroclinic
Eddy Transport

Direct numerical simulations (DNSs), as discussed by
Pérez et al. [2010], enable various diagnostics of com-
plex baroclinic wave flows to be obtained that can be

used to investigate quantitatively the validity of some of
the assumptions underlying various approaches to eddy
parameterization. Read [2003], Pérez [2006] and Pérez
et al. [2010] have investigated various aspects of the dif-
fusive approach to parameterizing heat transport in the
context of the rotating annulus by making use of diagnos-
tics of DNS model simulations of baroclinic annulus wave
flows over a wide range of conditions with reference to the
experimental measurements reported by Read [2003]. As
mentioned above in the first part of this section, the notion
that radial eddy heat flux should act down gradient with
respect to its zonal mean field is implicit in various pro-
posed parameterizations of eddy transport in the oceans
and atmosphere, although this is notoriously difficult to
deduce directly from theory or to verify in observations.
However, many of these formulations are derived from
simplified analyses based on quasi-geostrophic theory, so
they should apply equally well to both geophysical situa-
tions and in the laboratory, at least within a limited range
of parameters where quasi-geostrophy is reasonably valid.

Despite the well-established applicability of quasi-
geostrophy to laboratory systems such as the rotating
annulus [e.g., Williams et al., 2010], however, there has
been surprisingly little work done to investigate the
parameterization of heat transfer in stably stratified flow
in the laboratory and thereby to test the kinds of schemes
proposed for use in models of oceans and atmospheres. In
particular, Pérez et al. [2010] examined the extent to which
baroclinic eddy fluxes of heat or vorticity (potential or
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Figure 1.23. Scatter plots of eddy fluxes of heat and potential vorticity against their respective zonal mean gradient fields in
numerical simulations by Pérez [2006]; and Pérez et al. [2010] of fully three-dimensional, time-dependent baroclinic waves flows
under moderately supercritical conditions (� = 0.15, T = 1.30 × 107). Plots were obtained by plotting pointwise values of fluxes
and the respective radial gradient of the zonally averaged quantity across the whole meridional plane (outside boundary layers).
(a) Correlation of meridional heat flux against zonal mean temperature gradient. (b) Corresponding correlation for eddy fluxes
and zonal mean variations of QG potential vorticity. Adapted from Pérez et al. [2010]. Copyright 2010 with permission from
Elsevier.

relative) act directly down-gradient with respect to various
zonal mean fields in the simplest (right-cylindrical,
axisymmetric annular channel with flat horizontal bound-
aries) configuration of the annulus experiment.

They found that, contrary to the commonly held
assumption in many approaches that follow Gent and
McWilliams [1990] (hereafter referred to as GM90), the
horizontal eddy heat flux is only poorly correlated with the
lateral gradient of zonal mean temperature. Figure 1.23a
shows an example from Pérez et al.’s simulations in which
the local eddy heat flux (u′T ′) is plotted against ∂T/∂r
in an equilibrated baroclinic wave flow under moder-
ately super-critical conditions across the whole (r, z) plane
of the annulus. Although some structure is evident, the
dependence of (u′T ′) on ∂T/∂r is clearly a lot more
complicated than a simple, Fickian diffusive relationship
would suggest. This appeared to be typical of most fully
developed baroclinic wave simulations investigated by
Pérez et al. [2010], with |correlation coefficients|� 0.2 in
most cases except either under marginally unstable con-
ditions or transiently during the initial growth of the
instability, when correlation coefficients as large as −0.7
were found [Pérez et al., 2010].

In contrast, fluxes of (potential or relative) vorticity
were found to act quite closely down-gradient in most
cases investigated. An example is shown in Figure 1.23b
for quasi-geostrophic potential vorticity, plotted in the
same way (and for the same case) as Figure 1.23a
over the whole annular domain. In this case a strong

anticorrelation is clearly evident, indicating that quasi-
geostrophic potential vorticity is diffused horizontally by
baroclinic eddies with respect to its zonal mean field to
quite a good approximation. This behavior was found to
be quite generic for almost all cases investigated, with
correlation coefficients between u′q′ and ∂q/∂r ranging
from −0.75 to −0.9 for both equilibrated and transient
growing wave flows [Pérez et al., 2010]. Similar behav-
ior was also found for relative vorticity, in fact with even
larger (negative) correlation coefficients than for potential
vorticity.

Given such a clear correlation between eddy fluxes and
mean gradients, Pérez et al. [2010] were able to deduce an
effective eddy diffusivity Kq from a simple regression of
(u′q′) against ∂q/∂r in their model simulations. A straight-
forward linear regression led to the remarkable result that
Kq varied by less than a factor of 2 across the whole range
of parameters investigated. Figure 1.24 shows the varia-
tion of the value of Kq obtained by Pérez et al. [2010] as a
function of boundary layer ratio P (also cf Figure 1.18),
indicating that, at least for these experiments, Kq was
found to vary slowly between 1–2 ×10−2 cm2/s. The
largest values of Kq seemed to occur close to conditions
of marginal instability, withKq gradually reducing toward
a roughly constant value ∼ 10−2 cm2/s for all P � 5.

Given these results, Pérez et al. [2010] further tried to
determine whether one or more previously proposed clo-
sures for K were sufficient to represent the variations
found in their simulations based on an assumed form akin
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Figure 1.24. Dependence of eddy diffusivity for quasi-
geostrophic potential vorticity on boundary layer ratio P (pro-
portional to �) derived using data from correlating (u′q′) against
∂q/∂r in the rotating annulus model simulations of Pérez et al.
[2010].

to equation (1.30) with L represented by the width of the
baroclinic zone (i.e., the annulus gap width) and Ueddy
given by a thermal wind scale

Ueddy � LM2

N
, (1.58)

where N is the Brunt-Väisäla frequency,

M2 =
g
ρ

∂ρ

∂r
, (1.59)

such that Ueddy � 2�L/
√

Ri ∼ L/τEady, τEady is the lin-
ear growth time scale for the Eady model of baroclinic
instability, and Ri is the characteristic shear Richardson
number Ri = N2/(∂u/∂z)2 for the flow. In the event, no
single closure seemed to apply across the whole param-
eter range. Such a result is not unduly surprising, since
existing closures generally make assumptions based on
either linear instability theory (which one might expect
to hold close to marginal instability) or weakly nonlin-
ear theory [e.g., Pfeffer and Barcilon, 1978]. Their results
led to the conclusion that the observed variation of Kq
with rotation was broadly consistent with weakly nonlin-
ear theory close to conditions of marginal instability, with
efficiency parameter α increasing roughly linearly with
�−�c as suggested by Pfeffer and Barcilon [1978]. Under
more strongly supercritical conditions, α appeared to con-
verge to a roughly constant value that was consistent with
the value obtained for example, by Visbeck et al. [1997],
even to the extent of close quantitative agreement (0.013,
cf. Visbeck et al.’s value of 0.015).

Thus, for strongly supercritical baroclinic flows, the
annulus results obtained so far would seem to support a
parameterization approach based on the potential vortic-
ity diffusion hypothesis proposed by Treguier et al. [1997]
(hereafter referred to as THL97) and Killworth [1997],
with a closure for eddy diffusivity that is consistent with
Visbeck et al. [1997]. Closer to marginal instability, how-
ever, a different closure would seem to be preferred that
results in an increasing efficiency parameter α though not
entirely following the simple, weakly nonlinear recipe of
Pfeffer and Barcilon [1978]. Therefore, there would still
seem, to be a number of unresolved issues underlying this
somewhat unexpected behavior close to marginal instabil-
ity. In addition, the approach of Visbeck et al. [1997] is
overtly based on an application of linear instability theory
in a regime that is far from where linear theory should be
valid. The theoretical basis for this clearly deserves more
attention in future work.

1.4.5. Implementing Eddy Parameterizations
in an Annulus Model

The diagnostic approach discussed above using DNS is
useful for investigating some of the underlying assump-
tions behind various approaches proposed for eddy
transport parameterizations, especially those relating to
the family of parameterizations following Gent and
McWilliams [1990]. But in some respects the ultimate
test of any given approach to this problem is actually
to implement the parameterization in a numerical model.
Although this has been common practice in generations
of ocean circulation models for many years [e.g., Danaba-
soglu et al., 1994], this is a relatively novel approach in
the context of rotating annulus experiments and model
simulations. Parameterizing turbulent transfers in rotat-
ing flows is, of course, of major importance for many
engineering problems, e.g., in turbomachinery, where it
has been customary for many years to employ large
eddy simulation (LES) methods coupled with turbulence
models based on rotational modifications to the classical
Reynolds Averaged Navier-Stokes (RANS) model [e.g.,
see Cazalbou et al., 2005, and references therein] to rep-
resent the effects of shear instabilities in the presence
of background rotation. But the transformed Eulerian
mean approach underlying the Gent-McWilliams fam-
ily of parameterizations does not yet seem to have been
adopted within the engineering community to represent
unresolved eddy transports in stably stratified turbulence
in rotating cavities.

Recently, however, Pérez [2006] has taken the first
preliminary steps toward investigating this approach by
implementing two forms of Gent-McWilliams parame-
terization in his 2D (axisymmetric), Boussinesq Navier-
Stokes model of thermally driven flow in a fluid annulus
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rotating at angular velocity �. As with his earlier diag-
nostic work, Perez’s model was based on the conser-
vative, finite-difference model described in detail by
Hignett et al. [1985], which solves the full Boussinesq
Navier-Stokes equations together with continuity and
temperature advection-diffusion equations in cylindrical
annular geometry using an exponentially stretched mesh
in r and z to ensure adequate resolution of boundary
layers. Nonslip, impermeable boundary conditions were
applied at each boundary of the cavity, with fixed isother-
mal conditions at the inner and outer sidewalls and ther-
mally insulating conditions on the horizontal boundaries.
Fairly coarse resolution was adopted (32 × 32 points in
(r, z)) in all cases. Each parameterized simulation was ini-
tialized from an isothermal state at rest in the rotating
frame and then first run to equilibrium while holding
the boundary conditions fixed. The eddy parameteriza-
tion was then activated by adding parameterized vertical
and radial velocity components u∗, representing the trans-
formed Eulerian mean (TEM) velocity field [e.g., Andrews
et al., 1987] induced by the presence of baroclinic eddies,
to the 2D axisymmetric velocity field that was used to
advect momentum and temperature, and the model was
then integrated to its modified equilibrium.

The u∗ parameterization was derived from the instanta-
neously computed velocity and temperature fields within
the model either (a) using the original Gent-McWilliams
method based on equations (1.25) and (1.27) or (b) derived
from the zonal mean quasi-geostrophic potential vortic-
ity field following THL97 based on equations (1.32) and
(1.34). Because the zonally averaged isotherms become
very steep as the sidewall boundary layers are approached,
it was necessary to place limits on the isotherm gradient
utilized in the eddy parameterization. Pérez [2006] used
the method of slope tapering as advocated by Danabasoglu
and McWilliams [1995] for use in ocean circulation mod-
els. This method was also used to control the PV gradients
used in the THL97 parameterization, especially close to
the boundaries of the domain. The closure used for K was
either based on the formulation by Visbeck et al. [1997] or
(for potential vorticity) a constant diffusivity equivalent to
the value diagnosed from the fully 3D model simulations.

In practice, the original GM90 method was found to
be capable of matching the total Nusselt number of the
fully 3D simulated flows across the full range of param-
eters. However, apart from at the lowest rotation speeds
(close to marginal instability), the resulting temperature
fields did not match closely the zonally averaged fields
obtained in the full 3D eddy-resolving model. This was
almost certainly a reflection of the relatively weak correla-
tion found by Pérez et al. [2010] between (u′T ′) and ∂T/∂r
in the full 3D flow, so that the parameterized eddy-induced
circulation did not accurately reflect the real TEM circula-
tion in the 3D flow. This actually led to the development of

spurious numerical instabilities within the 2D parameter-
ized model in the most strongly super critical simulations,
even though the total heat transport of the 3D flow was
reproduced quite accurately in most cases.

Although the alternative THL97 PV-based parameter-
ization was not able to match the total Nusselt number
of the full 3D simulations as accurately as the GM90
scheme, it did result in much more realistic zonally aver-
aged temperature fields in the 2D parameterized model.
Figure 1.25 shows examples of (a) the eddy-induced TEM
stream function χ∗

q , (b) the resulting parameterized TEM
radial velocity u∗, and ( c) the eddy-induced TEM radial
velocity diagnosed from the corresponding fully 3D, eddy-
resolving model simulation at (�, T ) = (1.22, 1.6 × 106).
χ∗

q takes the form of a simple overturning aligned along
the principal direction of the isotherms and in the sense
required to advect them toward the horizontal. The corre-
sponding parameterized u∗ resembles the diagnosed TEM
radial velocity quite closely except close to the bound-
aries of the domain, where isotherm and PV gradients in
the main fields become very large and quasi-geostrophic
theory is no longer valid.

Examples of some simulated temperature fields are
shown in Figure 1.26, which shows (a) the zonally aver-
aged equilibrated temperature field in (r, z) from a fully
3D eddy-resolving simulation of moderately supercritical
flow at (�, T ) = (0.599, 3.26 × 106), (b) the equilibrated
temperature field from a 2D axisymmetric simulation
under the same conditions as in (a), and (c) the cor-
responding equilibrated temperature field from a 2D
simulation using the THL97 eddy parameterization imple-
mented by Pérez [2006]. Under these conditions, the
axisymmetric isotherms (b) are much more steeply sloped
than obtained in the eddy-resolving 3D model (a), where
fully developed baroclinic instability acts to release a lot
of stored available potential energy. This is well reflected
in the parameterized simulation, where the additional
eddy-induced component of the meridional circulation
has strengthened the advection of temperature sufficiently
to relax the isotherm slope toward the horizontal in a
way that emulates quite accurately the effects of baroclinic
eddies on the zonal mean flow in the 3D eddy-resolving
simulation, even to the point of retaining the static stabil-
ity structure. The total Nusselt number in the parameter-
ized simulation was 9.5 compared with a time-mean value
of 10.1 in the 3D eddy-resolving simulation, indicating a
tendency for parameterized simulations to underestimate
eddy heat transfer by around 20%.

This tendency becomes more pronounced in more
strongly supercritical conditions, with a parameterized
Nusselt number of 7.5 compared with a 3D Nusselt num-
ber of 9.1 at the most extreme conditions investigated by
Pérez [2006] at (�, T ) = (0.017, 1.17 × 108). As remarked
earlier, however, at these more extreme parameters the
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Figure 1.25. Maps in the (r, z) plane of (a) the eddy-induced transport stream function χ∗
q derived from a parameterization based

on the zonal mean QG potential vorticity field [Treguier et al., 1997], (b) the corresponding parameterized radial eddy-induced
velocity (u∗ = 1/r∂χ∗

q/∂z = (Kq/f )∂(q2D)/∂r), and (c) radial eddy-induced velocity diagnosed from the fully 3D simulation
(u∗ = −(u′q′)/f ) as obtained by Pérez [2006]. Note the remarkable degree of resemblance between (b) and (c). In each case
negative values are shown with dashed contours.

simulated zonal mean temperature field begins to appear
less obviously realistic, with apparent reversals of hor-
izontal thermal gradient in the geostrophic interior, for
example, that might reflect artifacts in the flow due to
inadequate spatial resolution in the model. This needs
to be investigated further in future work, which should
include proper verification of the heat transfer and flow
structure against laboratory measurements and the use of
a higher resolution model.

1.5. DISCUSSION

In this chapter we have argued for the continued value
and utility of rotating annulus laboratory experiments
in the context of wider studies of the global circula-
tion of planetary atmospheres and oceans. Despite many
advances in the numerical modeling of atmospheres and
oceans in the past 30 years, such approaches still have
many limitations, particularly with regard to uncertain-
ties associated with the use of finite resolution in space

and time, the use of (often ad hoc) parameterization tech-
niques to represent unresolved scales of motion, especially
concerning the difficulty of accurately validating model
simulations against measurements (which generally have
incomplete and patchy coverage in space and time).

Laboratory studies help to focus attention on what fac-
tors may be fundamental to processes affecting the cli-
mate of an Earth-like planet, particularly under changing
parametric conditions, in contrast to factors that may be
incidental and/or specific to a particular system and may
therefore be generalized across whole classes of system.
The results presented above on quantifying heat transport
in the thermally driven annulus system provide a prime
example, in which we show how fundamental ideas on
how the efficiency of heat transfer by baroclinic eddies
appear to apply with equal validity both to laboratory
flow systems and in the oceans (and in atmospheres too)
provided the contribution to heat transfer in the labora-
tory due to the boundary layer circulation can be sepa-
rated from that due to the baroclinic eddies themselves.
This leads naturally to the use of laboratory experimental
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Figure 1.26. Maps in the (r, z) plane of (a) the zonal mean temperature field (in ◦C) derived from the equilibrated simulation using
the 3D eddy-resolving numerical model (i.e., T3D), (b) the corresponding 2D axisymmetric temperature field T2D, and ( c) the
equilibrated temperature field in a 2D axisymmetric model simulation using the THL97 eddy parameterization as obtained by
Pérez [2006] for �T = 4 K and � = 1.0 rad/s (� = 0.599,T = 3.26 × 106).

studies as rigorous means of testing theoretical hypothe-
ses and understanding of heat transfer in geophysical
problems.

A particular strength of the rotating annulus is its
ability to achieve some degree of dynamical similarity
with atmospheric and oceanic phenomena where back-
ground rotation is a dominating factor. In seeking to
generalize results from the laboratory to geophysical sys-
tems, however, it is just as important to take account of
the differences between experimental and natural systems
as their similarities. The difference in geometry between
cylindrical and spherical configurations is one obvious
factor that must be taken into account, especially with
regard to quantitative comparisons between experimental
and geophysical systems. In addition, unlike in a planetary
atmosphere or ocean, for example, diffusive boundary lay-
ers play major roles in the thermally driven annulus system
in maintaining the mean stratification and horizontal ther-
mal contrast in the quasi-geostrophic interior. This may
make it difficult to use results from laboratory circulation
systems to address mechanisms for setting the stratifica-
tion in an ocean or atmosphere, for example, unless the
experiment can be specifically reconfigured to reduce or
allow for the influence of boundary layers.

The work described in Section 1.4 provides a power-
ful example of how combining insights and results from
both real experiments and numerical model simulations
can help to unravel the quantitative effects of boundary
layer and quasi-geostrophic circulations within labora-
tory flows, thereby assisting in generalizing results from
the latter to other systems. This methodological approach
in intertwining laboratory measurements with numerical
simulation offers the prospect of greatly increasing the
scientific value of laboratory-based studies in the future

(a) by utilizing laboratory measurements to directly
validate and compare numerical modeling techniques
and to investigate e.g. convergence properties of model
simulations with increasing resolution,

(b) by enabling simulations to be run that can test
hypotheses under conditions (e.g., by artificially sup-
pressing key instabilities) that may be difficult to realize
directly in the laboratory, and

(c) ultimately to allow direct deterministic model
predictions from initial states obtained using statistical-
dynamical assimilation methods that combine model
simulations with laboratory measurements.
The latter directly emulates the operational practice

of numerical weather and climate prediction for Earth’s
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Figure 1.27. Representative temperature fields (colors) and horizontal stream function (contours) produced from assimilated
horizontal velocity observations obtained in the same system as shown in Figures 1.8–1.13 and 1.21–1.26. Fields are plotted
for regular (a) � = 0.875 rad/s, Tb − Ta ≈ 4.07◦C) and chaotic flow (b) � = 3.1 rad/s, Tb − Ta ≈ 4.02◦C) at z = 9.7 cm above the
base of the annulus. Temperatures are relative to 22◦C. Adapted from Young and Read [2013] with the permission of John Wiley
& Sons, Inc. For color detail, please see color plate section.

atmosphere and oceans, offering the same potential uses
to (a) obtain analyses of complete fields in the presence of
incomplete and noisy measurements, (b) enable determin-
istic model predictions from assimilated measurements to
quantify predictability and sensitivity to initial conditions,
and (c) identify, characterize, and quantify systematic
model errors.

The work byYoung and Read [2013] applying data
assimilation to the rotating annulus experiment in the
form of analysis correction [Lorenc et al., 1991] began to
address some of these points. They demonstrated that it
is possible to take methods developed for meteorological
analysis and prediction and use them in the context of the
laboratory experiment toward a useful end. In particular,
they addressed the problem of incomplete measurements
using the analysis correction procedure with a Boussi-
nesq Navier-Stokes model to recover unobserved variables
such as temperature (Figure 1.27) solely from irregularly
distributed horizontal velocity observations at five verti-
cal levels. The diagnostics required to shed light on the
secondary instabilities at high rotation rate described in
Section 1.3.4 were only obtainable because unobserved
variables and vertically averaged quantities were retrieved
via the assimilation procedure.

Although they did not address any outstanding prob-
lems with the analysis correction method itself (it has
since been superseded by newer methods), this work laid
the foundations to do so with newer methods not yet

fully established in operational meteorological practice.
Potential methods of interest include the various fla-
vors of the ensemble Kalman filter (a version of which
Ravela et al. [2010] have applied in this context) and other
experimental methods that have been tested thus far pri-
marily using low-dimensional systems [e.g., Stemler and
Judd, 2009; van Leeuwen, 2010]. Laboratory experiments
bridge the gap between these low dimensional systems
and geophysical systems such as the atmosphere and,
by using laboratory experiments, methods can be tested
under laboratory conditions using a real fluid, a nonideal-
ized model, and incomplete and noisy observations.

1.5.1. Planetary Circulation Regimes

An important question that still deserves a lot more
attention than has been evident in the literature to date
is the extent to which the rich and complex diversity of
different flow regimes and bifurcations exhibited in the
laboratory are shared, even qualitatively, by a full scale
planetary atmosphere. The inability to carry out con-
trolled experiments on real atmospheres is a major obsta-
cle to progress in this regard (although of course such an
approach would have other undesirable consequences for
the inhabitants of such a planetary system!). The solar
system provides a small sample of around eight plane-
tary bodies with substantial atmospheres that occupy very
different positions in parameter space. But this samples
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the parameter space too sparsely to address the prob-
lem in much detail [e.g., see Showman et al., 2010; Read,
2011, for reviews]. The growing number of discoveries of
planets around other stars (e.g., see http://exoplanet.eu/
and Schneider et al. [2011]) offers the eventual prospect
of sampling parameter space much more densely, but the
available measurements are as yet much too crude to be
able to provide quantitative characterization of circula-
tion regimes. So at the present time (and for the foreseeable
future) the only way of addressing and characterizing the
diversity of planetary circulation regimes and bifurcations
is through the use of numerical model simulations.

To date, however, relatively little has been done to
define and sample an appropriate parameter space for
planetary circulations that comes anywhere near match-
ing what has been achieved in the laboratory, at least in
terms of breadth and detail with respect to the dominant
dimensionless parameters. The early work of Geisler et al.
[1983] laid some of the foundations for this approach in
using a stripped-down version of an atmospheric global
circulation model (GCM) to investigate a range of proto-
typical circulations with an imposed equator-pole thermal
contrast and varying rotation speeds of an Earth-like
planetary atmosphere. By explicit analogy with laboratory
rotating annulus experiments, they presented their results
with respect to two dimensionless parameters:

(i) A thermal Rossby number defined as

�S =

(
gH

f 2
0 L2

)
�T
Tr

, (1.60)

where H is a pressure scale height (= RTr/g), R is the gas
constant, f0 = 2� sin φ0 (φ0 was taken to be a latitude of
45◦), L is a horizontal length scale, �T is the imposed
equator-pole temperature contrast at the surface, and Tr
is a reference temperature.

(ii) A Taylor or inverse squared Ekman number,
defined as

T � E−2 =
�2H4

K2
v

, (1.61)

where Kv is a vertical “eddy viscosity” coefficient.
For various practical reasons Geisler et al. [1983] only

studied cases equivalent to an Earth-like planet rotating at
the same speed as or slower than Earth itself. But this did
enable them to demonstrate the existence of a “lower sym-
metric” regime at relatively small �T , where wavy flows
gave way to axisymmetric circulations, the boundary of
which was found close to the line defined by �S � 105E2.
This roughly emulates the lower symmetric regime bound-
ary found in rotating annulus experiments using relatively
high Prandtl number fluids [Fein, 1973]. They also found
evidence for a regular baroclinic wave regime at higher val-
ues of �S than for Earth itself (�S � 0.05), where the

flow was dominated by near-monochromatic waves, peak-
ing in amplitude at midlatitudes and drifting in longitude
at a roughly steady rate. These waves were either steady in
amplitude or apparently undergoing periodic oscillations
reminiscent of the amplitude vacillation behavior seen in
the annulus.

A significant difference from the laboratory systems
was found, however, at the highest values of �S, which
would lie above the corresponding upper symmetric tran-
sition in the laboratory and would therefore be expected to
exhibit axisymmetric flow. Instead, the flow in the spher-
ical shell was found to transition from a predominantly
baroclinic wave flow to a barotropically unstable flow, also
with zonally propagating waves of relatively low zonal
wave number m � 2 drifting around an intense polar
vortex. This kind of behavior has since been confirmed
in more recent work [e.g., Mitchell and Vallis, 2010] in
which such barotropically unstable flow at low plane-
tary rotation speeds may also be associated with strongly
superrotating zonal flow at low latitudes. Such a flow
appears be consistent with the strongly superrotating cir-
culations found on very slowly rotating planets such as
Venus and Titan.

Since Geisler et al.’s early study, there has been a steady
trickle of other work [e.g., Williams and Holloway, 1982;
Del Genio and Suozzo, 1987; Williams, 1988a, 1988b;
Jenkins, 1996; Navarra and Boccaletti, 2002; Barry et al.,
2002; Schneider and Walker, 2006] exploring other areas
of parameter space, including cases corresponding to even
faster rotation speeds (lower values of �S) than Earth.
Another early pioneer of this kind of modeling study was
Gareth Williams [Williams and Holloway, 1982; Williams,
1988a, 1988b], who presented results from an Earth-like
GCM for which the planetary rotation rate was varied
between �E/16 and �E × 8 (where �E is Earth’s rota-
tion speed). At higher rotation speeds than that of Earth,
Williams’ model simulations suggested that the dominant
scale of baroclinic instability would continue to decrease
with increasing �, but with a tendency (at � � 2�E)
for the subtropical zonal jet stream to break up into a
set of two or more parallel jets associated with paral-
lel trains of baroclinically unstable eddies. At the highest
rotation speeds, up to seven or eight parallel jets were
obtained in each hemisphere, resulting in a circulation pat-
tern that bore a strong resemblance to that of Jupiter’s
or Saturn’s cloud bands. Williams did not attempt to
locate his simulations in a dimensionless parameter space,
but Read [2011] computed approximate values of �S
and dissipation parameters to locate these experiments
retrospectively. In common with some more recent work,
the results appear to suggest that the multiple jets organize
themselves on a scale comparable with the Rhines scale
and are largely generated and controlled by the nonlinear
interactions between eddies and the zonal flow.
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This tendency to form multiple, parallel wave trains and
zonal flows is reminiscent of the kind of flow regimes
obtained in thermally driven annulus experiments with
oppositely sloping end walls to generate a topographic
β effect [e.g., Mason, 1975; Bastin and Read, 1997, 1998;
Wordsworth et al., 2008]. As argued by Read [2011], how-
ever, in contrast to laboratory experiments with bound-
aries of variable end wall slope, the global Rhines length
scale (∼ (Urms/β)1/2 ∼ (Urmsa/(2�))1/2) is not indepen-
dent of the thermal Rossby number in a planetary cir-
culation. It is largely set by the spherical geometry and,
in simple cases, may scale roughly as

√
�S (though the

full situation may be more complicated than this; e.g., see
Jansen and Ferrari [2012] for further discussion). Thus,
provided an analog of the planetary vorticity gradient is
present in the laboratory, there appear to be strong paral-
lels between the principal sequences of regime transitions
in both cylindrical annular laboratory experiments and
planetary atmospheres in spherical shells across much of
the parameter space. But many gaps in our understanding
of these parallels remain to be explored in detail.

However, the ability to run many experiments in the lab-
oratory in order to sample parameter space densely offers
the possibility of testing various theoretical scalings for
circulations that operate on a planetary scale in atmo-
spheres and oceans. Numerical models will continue to
struggle to match this, especially at high planetary rotation
rates where the range of dynamically significant scales of
motion demands the use of very high resolution models.
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