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Predictability of the thermally driven laboratory rotating annulus
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We investigate the predictability of the thermally driven rotating annulus, a laboratory
experiment used to study the dynamics of planetary atmospheres under controlled and
reproducible conditions. Our approach is to apply the same principles used to predict
the atmosphere in operational weather forecasting. We build a forecasting system for
the annulus using the analysis correction method for data assimilation, the breeding
method for ensemble generation, and the Met Office/Oxford Rotating Annulus Laboratory
Simulation as the forecast model. The system forecasts the annulus in steady (2S), amplitude
vacillating (3AV), and structurally vacillating (3SV) flow regimes, verifying the forecasts
against laboratory data. The results show that a range of flow regimes from this experiment
can be accurately predicted. Forecasts in the steady wave flow regime perform well,
and are predictable until the end of the available data. Forecasts in the amplitude and
structural vacillation flow regimes lose quality and skill by a combination of wave drift and
wavenumber transition. Amplitude vacillation is predictable up to several hundred seconds
ahead, and structural vacillation is predictable for a few hundred seconds. The wavenumber
transitions are partly explained by hysteresis in the rotating annulus experiment and model.
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1. Introduction

Over a hundred years ago, early meteorologists realised that, while
it might be possible to use the equations of atmospheric dynamics
to determine future weather, they were beyond the capacity
of mathematical analysis to solve. Instead, they constructed
laboratory experiments that replicated the major influences on
the Earth’s atmosphere – gravity, heat, and rotation – arguing that
recreating the atmosphere in the laboratory would allow it to be
more readily understood and predicted (Vettin, 1857; Thomson,
1892; Bigelow, 1902; Abbe, 1907). Under certain conditions of
experimental geometry and fluid, the principle of dynamical
similarity could be used to ensure the same balance of forces in
the atmosphere and the laboratory, and hence the two systems
obeyed the same governing equations (Fultz, 1951).

Laboratory systems are still important for studying the basic
mechanics underlying atmospheric motion. Such an environment
is under full control of the experimenter, making the dynamics as
repeatable as possible and hence subject to rigorous experiment.
The thermally driven rotating annulus (Hide, 1953; Hide and
Mason, 1975) is one such laboratory system (Figure 1(a)).
It consists of two concentric cylinders maintained at different
temperatures, rotating about a vertical axis, with fluid between
them. The external forcing mimics the effects of rotation, gravity,
and the difference in intensity of solar heating between low and

high latitudes on the midlatitudes of a planetary atmosphere
(Figure 1(b)), with other effects rendered secondary. It is now
firmly established as an insightful laboratory analogue for certain
kinds of atmospheric dynamical behaviour.

The application of methods used to study and predict atmos-
pheric circulation in one context may provide insights into their
use in another. This article uses meteorological techniques to
study the predictability of the rotating annulus experiment. The
annulus displays a rich range of behaviour worthy of study in its
own right. Like the atmosphere, the annulus experiment can dis-
play chaotic dynamics (Lorenz, 1963; Read et al., 1992; Young and
Read, 2008b). Furthermore, a large region of parameter space can
be explored, so the experiment is useful for studying situations
not just relevant to the Earth but to other planets and atmospheric
predictability in general. For example, the Martian atmosphere is
surprisingly predictable at certain times of year (Newman et al.,
2004; Rogberg et al., 2010). The main aim of this article is to inves-
tigate the breakdown in predictability of baroclinic flow under
a range of conditions in the laboratory–for how long can such
flows in the annulus be forecast accurately, and what mechanisms
cause predictability in annulus forecasts to be lost over time?

Lorenz (1975) defined two kinds of predictability: the first
concerns the evolution of a system from initial conditions (the
‘weather’ problem), and the second the predicted behaviour given
certain boundary conditions (the ‘climate’ problem). The second
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(a) (b)

Figure 1. (a) Photograph of an annulus in AOPP’s fluid dynamics laboratory
(photo: Robin Wordsworth). (b) Illustration of the planetary analogue (image:
NASA).

kind is well characterised in some regions of parameter space for
the rotating annulus (Hide and Mason, 1975; Read et al., 1992;
Früh and Read, 1997; Read et al., 2015), but the first kind has
not previously been studied in much depth. Limited previous
work includes using a radial basis function model to measure ι-
shadowing times from experimental temperature data (Gilmour,
1998), and calculations of the Lyapunov exponents for various
annulus flow regimes from experimental time series (Read et al.,
1992; Früh and Read, 1997), but these have only limited usefulness
for characterizing the general predictability of complex systems.

The approach in this article is to adopt a similar framework
to numerical weather prediction (NWP), combining a forecast
model, a data assimilation scheme to calculate an accurate initial
condition, and an ensemble generation mechanism to span
the distribution of initial uncertainty. The Met Office/Oxford
Rotating Annulus Laboratory Simulation (MORALS) will be
used as the forecast model (Farnell and Plumb, 1976; Hignett
et al., 1985; Read et al., 2000). For data assimilation we use
analysis correction (Lorenc et al., 1991), which we have already
studied on its own in this context (Young and Read, 2013). We
use the breeding method for ensemble generation (Toth and
Kalnay, 1993, 1997). Breeding selects initial conditions based on
the previous nonlinear evolution of the flow; small perturbations
are periodically rescaled to ‘breed’ perturbations which identify
the regions of most rapidly growing instability. We have also
already applied breeding to the rotating annulus in isolation,
using the perfect model scenario (PMS; Young and Read, 2008a).

By using these well-established techniques a second aim is to
demonstrate that meteorological techniques can be applied in
the controllable and reproducible environment of the rotating
annulus in the laboratory and give sensible results about its
predictability. There may be potential for annulus experiments
to be used to study and evaluate new and proposed methods
for prediction and assimilation that have not yet been put into
operational use. The laboratory scale is a natural bridge between
meteorologically relevant low-dimensional systems such as the
Lorenz (1963) equations and the atmosphere itself.

In section 2 we present the full forecasting framework.
Section 3 describes the forecasts, main results, and measures of
predictability. In section 4 we explore in detail the wavenumber
transitions seen in some forecasts, and in section 5 we conclude.

2. Methods

2.1. The rotating annulus model

MORALS solves the Navier–Stokes, continuity, and heat
equations for temperature T and radial u, azimuthal v, and vertical
w velocities in cylindrical polar coordinates (R, φ, z), under the
Boussinesq approximation. There is a diagnostic equation for
kinetic pressure � = p/ρ0 solved using a Poisson equation (we
shall refer to this quantity simply as ‘pressure’ from here). It
uses an equation of state for density ρ and two constitutive
relations for viscosity ν and thermal diffusivity κ , all quadratic
functions of temperature. The full equations are listed by Young
and Read (2013). The model domain consists of a fluid bounded
by conducting cylinders at radii R = a, b at temperatures Ta and
Tb respectively (�T = Tb − Ta), and insulating top and bottom
boundaries at heights z = 0, d. The boundaries are no-slip, and
the system rotates at angular velocity � about its central axis. The
model grid is uniform in φ but stretched in R and z to resolve
the boundary layers (three points in each). The resolution of the
model is 24 × 64 × 24 grid points on an Arakawa-C grid.

2.2. The forecasting framework

The Framework for Annulus Numerical Forecasting and
Assimilation using Random Ensembles (FANFARE) has been
developed to produce ensemble forecasts of the laboratory
rotating annulus. Figure 2 shows a block diagram with the basic
components of the framework. The forecast itself begins at t = t2,
and the stages before t2 are used to set up the ensemble and an
accurate initial condition.

During the development of FANFARE, the ensemble prediction
scheme (Figure 2, dark grey) was first developed and used in the
PMS with artificial data generated by MORALS (Young and
Read, 2008a). Second, the assimilation stage (Figure 2, light
grey) was developed and used on its own with data from the
laboratory annulus (Young and Read, 2013). The complete
framework combines and updates these two components, adding
components to produce and verify forecasts against laboratory
data (Figure 2, black).

2.2.1. Model spin-up

The first step in each forecast was to initialise MORALS, running
from t = 0 to t0 to generate the background state for the
first assimilation. t0 was chosen so any transient oscillations
from the initial perturbation to the axisymmetric state had
decayed.

Figure 2. Block diagram showing the different stages and components of FANFARE. Arrows represent the flow of information between different stages. The stages
are colour-coded: white, light grey, dark grey, and black for the four parts outlined in sections 2.2.1–2.2.4 respectively.
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2.2.2. Data assimilation stage

The second stage of the forecast ran from t0 to t2, the start
of the main forecasts. This stage used data assimilation to
produce a sequence of analyses xa which were then used as
initial conditions for the breeding and forecast stages. Data
assimilation combines observations, previous forecasts, climate,
and relationships between physical quantities to produce the
analysis. We used the analysis correction (AC) method (Lorenc
et al., 1991). Our implementation is fully described elsewhere
(Young and Read, 2013), and the reader if referred to that article
for full details. In AC the analysis is

xa = xb + W˜Q
{

yo − H(xb)
}

, (1)

where xb is a first guess (the background), yo is a set of
observations, H maps the background to the observation points,
and W˜Q is a gain matrix. W˜Q combines information about
horizontal and vertical weighting functions between model
and observation points, data density, time weighting, and
observational, interpolation, and background-error covariances.
AC is fairly straightforward to use and there was some local
familiarity with it in the context of the Martian atmosphere
(Montabone et al., 2006). We did not use variational techniques
because at the time tangent linear and adjoint models were not
available for MORALS.

The assimilation stage had two purposes. The first was to
provide initial conditions for a sequence of short forecasts used
to generate breeding vectors between t1 and t2. The second was
to provide an initial condition for the main forecasts starting
at t2. The parameters used in these assimilations were the same
as in Table 3 of Young and Read (2013). Between t0 and t1

the assimilation ‘spun up’ before breeding started, calculating
Nbefore analyses every �tshort. This was required because the initial
background state at t0 and the laboratory observations are initially
independent. The assimilation then ran from t1 to t2, producing
a series of analyses at each of the times required to start breeding
cycles (the rescaling times, �tB apart). To avoid computational
expense, the assimilations during the breeding stage were split
into two sequences. All but the final Nshort assimilations before
each analysis required for breeding were separated by �tlong. The
final Nshort assimilations were separated by �tshort.

We chose Nbefore, �tshort, and �tlong so the analysis converged
by the rescaling time, and also to optimise the available resources.
The relevant time-scales here are the length of the assimilation
window and the time between assimilations. Typically the second
of these is as short as possible (Lorenc et al., 1991, use one
timestep), but that is not practical in our case. The assimilation
window length for the atmosphere is typically a relevant mesoscale
time-scale (say 6 h). In the annulus the comparable time-scale is
the vacillation period, which is a couple of hundred seconds for
regular flow, and around 50 s for chaotic flow; our assimilation
windows are slightly shorter than this. Young and Read (2013)
discuss these choices in some detail.

2.2.3. Breeding vector stage

The breeding method (Toth and Kalnay, 1993, 1997) is a
powerful yet simple method for estimating the uncertainty in
the analysis and for building an ensemble of initial conditions
reflecting the nonlinear evolution of the flow. The result is a set
of ‘breeding vectors’ (or BVs), which identify regions of most
rapidly growing instability. The basic procedure is
(i) perturb the analysis with random noise;
(ii) forecast a short time into the future from the unperturbed
and perturbed states;
(iii) calculate the difference between the two;
(iv) rescale the difference to the size of the original perturbation
(if it has grown);

(v) use the rescaled difference (the BV) as the new perturbation;
and
(vi) repeat from step (ii).

We chose to use breeding vectors here primarily for practical
reasons. An alternative is to use the method of singular vectors
(Buizza and Palmer, 1995), which selects initial conditions based
on the direction of the fastest-growing linear perturbations to the
analysis state over a short optimization period. However, BVs
are computationally cheaper to construct than singular vectors,
and at the time there was no tangent linear model for MORALS
(although there is now,∗ so we may consider singular vectors in
the future).

The BV generation stage begins at t1 and ends at t2, and is
used to generate an ensemble of forecast initial conditions by
perturbing the analysis at t2. Multiple cycles are required for a
coherent structure to develop in the BVs.

In this work we use ‘self-breeding of twin forecasts’ (Toth and
Kalnay, 1997). This differs slightly from our PMS work (Young
and Read, 2008a), which used standard breeding. Self-breeding
runs M breeding cycles with identical positive and negative
perturbations and bases the BV on the difference between these
forecasts, rather than between perturbed and non-perturbed
forecasts. This method was used operationally by the National
Centers for Environmental Prediction (NCEP) during the 1990s
(Toth and Kalnay, 1993).

The procedure starts at t = t1 with analysis xa computed
as described above. M initial Gaussian noise perturbations are
produced in the u and v fields (MORALS solves a Poisson
equation for pressure to ensure the flow remains non-divergent).
Because only u and v observations are available the w, T, and
� fields are not perturbed at t1. This noise has mean zero
and standard deviation a constant fraction (the ‘bred vector
amplitude’, denoted F) of the climatological RMS variance of u
and v at that point (denoted σua and σva in the two fields). F is
determined empirically; see Table S2 and Figure S3 of Document
S1 for more detail, along with the climate calculation (Table S1
and Figure S2, Document S1).

Our choice of F puts our experiments within the region of
slow growth identified by Toth and Kalnay (1993). In fact,
the MORALS error growth in the regimes studied seems to be
independent of perturbation size; a similar analysis to Harlim
et al. (2005, Figure 1) showed there is no faster growth at small
perturbation size. Both these articles attributed this faster growth
to fast convective modes, but we suspect these may not exist
in our model, which is non-hydrostatic, has no subgrid-scale
parametrizations, and shows no evidence of strong inertia-
gravity waves (at the points in parameter space studied here, at
least).

These M perturbations are added and subtracted from the
analysis at t1 to generate 2M perturbed initial conditions
(superscript p):

up,m±(t1) = ua(t1) ± F σua N(0, 1), m ∈ [1, ..., M], (2)

and similarly for v (the other fields take their analysis values). Each
initial condition is then used to start MORALS, which integrates
it forward by �tB (the ‘rescaling time’). At t = t1 + �tB, the
difference (superscript d) is calculated between pairs of forecasts
started from positive and negative initial conditions (now all five
fields):

xd,m(t1+�tB) = xp,m+(t1+�tB) − xp,m−(t1+�tB),

m ∈ [1, ..., M], (3)

to give a set of M difference fields. These differences are then
rescaled. The norm, denoted ηm(t) for perturbation m, is a

∗U. Achatz, 2010; personal communication.
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(a) (b)

(c)

Figure 3. Laboratory rotating annulus observations. (a) Schematic showing the
vertical distribution of annulus observations in datafiles expf1 and expf2 (2S/3AV).
(b) As (a) but for expf5 and expf6 (3SV). (c) Example horizontal velocity
observations in the expf2 datafile, showing a single dataset at z = 9.7 cm. The two
independent subsets are shown as red (grey in print) and black vectors.

volume-weighted horizontal velocity magnitude:

ηm(t) =
√∫ [{

ud,m(t)
}2+

{
vd,m(t)

}2
]

dV

/∫
dV . (4)

The growth after cycle c is

gm(t1 + c�tB) =
1
2ηm(t1 + c�tB)

ηm(t1)
, (5)

where ηm(t1) is calculated at the start of the first breeding cycle
using the difference between perturbation and analysis. The 1/2
in the numerator is there because subsequent η are calculated
from the difference between forecasts from positive and negative
perturbations. A growing perturbation has gm(t1 + c�tB) > 1,
and if the perturbation has grown then all five difference fields
are scaled by this ratio to produce BVs:

xbv,m (t1 + c�tB) = xd,m(t1 + c�tB)

gm(t1 + c�tB)
. (6)

A decaying perturbation has gm(t1 + c�tB) ≤ 1, in which case
the fields are not rescaled and the BV is simply half the difference
field:

xbv,m (t1 + c�tB) = 1

2
xd,m (t1 + c�tB) . (7)

The M new bred vectors then perturb the next analysis at
t = t1 + c�tB (note all five fields are now perturbed):

xp,m±(t1+c�tB) = xa(t1+c�tB) ± xbv,m (t1+c�tB) . (8)

These 2M initial conditions are then integrated forward by
MORALS. This cycle is repeated in intervals of �tB, until t2.

Corazza et al. (2003) showed that BVs can be used to
estimate the background-error covariance (the ‘errors of the
day’). FANFARE was designed so no information passed from
the breeding to the assimilation, as it made the scheme easier
to code in modular form because the complete sequence of

(a)

(b)

(c)

Figure 4. Wave drift during the assimilation stage for representative forecasts in
the three flow regimes. Dots are wave drift for each analysis, and the dashed line
is the linear best fit. (a) forecast A2 (2S), (b) forecast C2 (3AV), and (c) forecast
G1 (3SV).

analyses could be processed before any BVs. However, no
updated information about the background-error covariance
can pass from the breeding to the assimilation, so we used the
same background-error covariance for each analysis. The initial
background to experimental error ratio was sufficiently large for
this approximation to be reasonable in almost all cases.

2.2.4. Forecast stage

In the forecast stage the ensemble of initial conditions at t2 was
used to predict subsequent laboratory observations up to t3. The
ensemble contained an unperturbed control forecast from the
assimilated analysis, and a set of 2M perturbed forecasts created
using the BVs:

xc(t2) =xa(t2),

xp,m±(t2) =xa(t2) ± xbv,m(t2), m ∈ [1, ..., M].

}
(9)

These 2M + 1 initial conditions were integrated by MORALS
from t2 to t3, and then compared with laboratory observations at
5 s intervals between those times.

2.3. Laboratory data

Four laboratory datafiles were used in this work, from the AOPP
archive of rotating annulus data. Each contains about 10 000 s of
horizontal velocity observations (u and v) grouped in datasets
every 5 s. Three datafiles (expf2, expf5, and expf6) were used
for forecasting, and the fourth (expf1) was just used to compute
climate distributions. expf1 and expf2 contain flow in regular flow
regimes 2S (steady) and 3AV (amplitude vacillating) (Hide and
Mason, 1975), and expf5 and expf6 are in the 3SV (structurally
vacillating) chaotic flow regime (Read et al., 1992).

The apparatus used allows measurements to be taken at up to
five different levels in the annulus, shown in Figure 3(a,b). Flow
velocities are calculated using Particle Imaging Velocimetry over
a 1 s interval. The random error in each velocity component was

c© 2015 The Authors. Quarterly Journal of the Royal Meteorological Society
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estimated (Young and Read, 2013) to be 0.0057 cm s−1, which
is much smaller than the velocity variability. The sequence of
observations is staggered: the first 5 s take data at the top level,
followed by 5 s at each of the other heights in turn, then the cycle
repeats. There are no observations of w, T, or �. Figure 3(c)
shows an example velocity field dataset from the expf2 datafile.

Each dataset is split into two or more subsets; in Figure 3(c)
these are shown in red and black. All datafiles have two subsets
except expf5, which has three. The subsets are separated by
about a second, and while some measurements may be the same
particle measured more than once, the subsets are sufficiently
uncorrelated to be used as independent data valid at the same
time (the separation time is much smaller than the shortest time-
scale of the flow). The forecasts use one subset for assimilation
and breeding and to generate the initial condition, and verify
against another, independent, subset.

Full details of the expf2, expf5, and expf6 datafiles, including
how the data were preprocessed and filtered, and how the random
error in each velocity vector was calculated, are provided in Young
and Read (2013), and the reader is referred to that article for
details. expf1 was not used in that article and so equivalent details
are included in the Document S1 (Figure S1). The data can be
downloaded from ORA-Data (Young et al., 2015).

2.4. Wave drift

A correction is made to the completed forecasts before they are
verified against observations. In initial testing wave drift was
identified as a major source of forecast error. As the forecast
and the real annulus evolve over time, the waves in the two
can precess around the tank at different rates, because a wave’s
phase speed is sensitive to a number of parameters which must
be matched between forecast and experiment, particularly �T
and �. Systematic errors in the model make this harder than
just setting the same parameters as were used in the laboratory.
Young and Read (2008b) identified a systematic shift in � of
–0.11 rad s−1 for regime transitions at low � between MORALS
and laboratory observations. This shift is accounted for, but the
estimate is only accurate to ±0.02 rad s−1 and only at low � where
transitions are sharp.

In practice the wave drift can be corrected empirically. We
estimate the drift before the forecast begins by comparing an
unassimilated run with the analysis during the data assimilation
stage. The drift is the difference between the phases of the
dominant pressure modes at mid-(R, z) in the two cases. The
average drift rate is calculated over the assimilation stage
(Figure 4), and then a reverse azimuthal transformation is
applied to the model fields. We use this to correct both the
mean forecasts, assuming constant drift into the future, and
also to correct the BVs, as both the positive and negative
perturbations are subject to wave drift relative to observations,
but the subsequent BV is added to an analysis not subject to the
drift.

3. Forecasts of the laboratory annulus

Fourteen forecasts were run, each covering a sequence of
observations at a single rotation rate �. To be suitable, the
sequence of observations at a particular � had to meet the
following conditions:
(i) Ignoring the first 200 s at each � to allow the flow to equilibrate,
there must be enough time before the next � transition to generate
BVs (400–500 s) and to run a forecast of at least 1000 s. This
excluded all of datafile expf1, so this was only used to calculate
climate statistics.
(ii) Observation times with no data should be avoided during the
assimilation and BV generation stages.
(iii) � values where there are wavenumber transitions in the data
are avoided (e.g. � = 0.8 rad s−1 in expf2).

(iv) Sequences used to test the breeding or assimilation parameters
should ideally be avoided, although this was not possible in
practice with the 2S forecasts.

Seven � values satisfied these conditions. One is in the 2S
regime, two are in 3AV (the ‘regular regimes’), and four are
in 3SV (the ‘chaotic regime’). Figure 5 shows the position
of each forecast in its datafile, and Table 1 lists the forecast
parameters. The forecasts all fell on the line (Ta, 
T) =
(4.89×106�2, 0.125�T/�2) in the standard annulus regime
diagram, where Ta and 
T are the Taylor and thermal Rossby
numbers respectively. The tank had inner and outer radii
a = 2.5 cm and b = 8.0 cm respectively, depth d = 14.0 cm, with
a 83% water/17% glycerol working fluid by volume (Prandtl
number 13.4). �T is approximately 4.05 K in datafile expf2, and
4.02 K in expf5 and expf6.

Other parameters common to each forecast (Table S2,
Document S1) were the long time-scale between analyses in
the breeding stage �tlong = 5.0 s, the number of assimilation
cycles before the breeding stage Nbefore = 10, the bred vector
amplitude F = 0.2, and the breeding rescaling time �tB = 20 s.
Forecasts in regimes 2S and 3AV had the time between analyses
in the assimilation stage �tshort = 2.5 s and NB = 20 breeding
vector cycles, while these were �tshort = 1.0 s and NB = 25 in
regime 3SV. The model time step was δt = 0.02 s for the regular
regimes and δt = 0.01 s for the chaotic regime.

We spent some time investigating the optimal breeding
parameters; see Document S1 and Young and Read (2008a)
for details. The rescaling time needs to be sufficiently short for
baroclinic instabilities not to saturate (Toth and Kalnay, 1993,
their Figure 6). Hide and Mason (1975, their Figure 15) shows the
time-scale for growth of the most unstable baroclinic mode for
a typical rotating annulus; our experiments fall in the 30–100 s
range, while for the Earth’s atmosphere it is about 4 days (Vallis,
2006, his Eq. 6.98). Both in our case and for atmospheric breeding
a handful of rescaling times cover the period it takes a baroclinic
wave to grow.

Each forecast computed eight independent breeding cycles for
a forecast ensemble of 16 perturbed forecasts plus the control
forecast. Two forecasts were done at each �, for repeatability of
the experiment in each case, and they are identical except a few
details (Table 1).

It should be noted that to produce analyses between t0 and t2,
AC uses observations from t0 − tf to t2 + tb, where tf and tb are
the lengths of the assimilation window forwards and backwards
in time from a single observation (Young and Read, 2013), so the
initial conditions for the main forecasts use some information
from the future. We use t2 as the zero point for the forecast
time axes, so it should be noted in advance that the ‘real’ forecast
only begins at t2 + tb. In practice tb is small compared with
most predictability times (26 and 21 s for the regular and chaotic
regimes respectively).

3.1. Breeding vectors

The breeding vectors produced in the different flow regimes
highlight interesting differences between the flows and reflect the
unstable nature of some of the flow regimes.

In Figure 6 we show all the azimuthal velocity BVs at the start
of the 3AV C2 and 3SV D2 forecasts. In the regular regimes
the BVs generally resemble waves of the same wavenumber
as the analysis, although not necessarily in phase. In some
cases wavenumber-2 BVs form in the 3AV forecasts. By the
end of the breeding stage, a coherent structure has formed
in each perturbation, with the BVs for a particular forecast
generally all visually similar to each other. For a given feature,
some BVs have a peak and others a trough, which is expected
from the symmetry of the initial perturbation. In the chaotic
regime, the BVs do not form clear wave structures. Over the
course of the breeding stage, features grow and decay as the

c© 2015 The Authors. Quarterly Journal of the Royal Meteorological Society
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(a) (b) (c)

Figure 5. Positions of the forecasts within the laboratory datafiles. (a) expf2: forecasts A, B, and C, (b) expf5: D, and (c) expf6: E, F, and G.

Table 1. Parameters used for the main forecasts. Forecasts with suffix ‘1’ have a 2000 s background run, assimilation dataset 1 and verification dataset 2. Those with
suffix ‘2’ have a 2050 s background, using assimilation dataset 2 and verification dataset 1.

Flow Run Datafile Rotation Assimilation Breeding Breeding Forecast Forecast Forecast
regime rate � start start length start length end

(rad s−1) t0 (s) t1 (s) t2 − t1 (s) t2 (s) t3 − t2 (s) t3 (s)

2S A1 expf2 0.775 7960 7985 400 8385 1360 9745
2S A2 expf2 0.775 8010 8035 400 8435 1310 9745
3AV B1 expf2 0.825 3960 3985 400 4385 1360 5745
3AV B2 expf2 0.825 4010 4035 400 4435 1310 5745
3AV C1 expf2 0.850 1960 1985 400 2385 1360 3745
3AV C2 expf2 0.850 2010 2035 400 2435 1310 3745
3SV D1 expf5 2.4 3810 3820 500 4320 1270 5590
3SV D2 expf5 2.4 3860 3870 500 4370 1220 5590
3SV E1 expf6 2.6 200 210 500 710 1245 1955
3SV E2 expf6 2.6 250 260 500 760 1195 1955
3SV F1 expf6 2.8 4160 4170 500 4670 1285 5955
3SV F2 expf6 2.8 4210 4220 500 4720 1235 5955
3SV G1 expf6 3.0 8160 8170 500 8670 1285 9955
3SV G2 expf6 3.0 8210 8220 500 8720 1235 9955

(a) (b)

Figure 6. Azimuthal velocity breeding vectors for forecasts (a) C2 (3AV) and (b) D2 (3SV), at the start of the forecast (t = t2). The analysis at z = 9.7 cm is shown in
the top left, followed by the eight BVs generated by rescaling the difference between positive and negative forecasts. Figure S12 of Document S1 shows equivalent plots
for the other forecasts.
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(a)

(b)

Figure 7. Diagnostics from the BV generation stage. Numbers show the breeding
cycle at that time. (a) Cumulative growth factor (Eq. (10)). Each line shows the
(geometric) mean of the growth factors over all BVs in the ensemble. (b) Relative
nonlinearity (Eq. (11)). Each line shows the (arithmetic) mean of the RNL values
for each bred-pair in the ensemble. The dashed line shows RNL = 0.2.

underlying structure of the analysis changes, on time-scales up to
100 s.

Figure 7 shows the cumulative growth for BVs in all forecasts
during the BV generation stage. The cumulative growth of a BV
after c breeding cycles is

Gc = gc

c−1∏
i=1
gi>1

gi, (10)

using g from Eq. (5). Essentially Gc is the growth in the current
step multiplied by the cumulative growth up to the last time
the fields were rescaled. This formulation is required because
the BV is only rescaled if it grows during the cycle. The regular
regime BVs decay (black, blues) and the chaotic regime BVs
grow (reds, greens). All perturbations decay in the first cycle
because all directions in the phase space are perturbed by the
Gaussian perturbation but most are stable, decaying directions.
Only in later cycles do unstable directions become dominant.
In the regular regimes, after the initial decay the growth is slow
over cycles 3→20, at a multiplicative rate of ∼1.07 cycle−1. This
growth is non-exponential, with a BV doubling time around 200 s.
3SV growth is faster, at a factor 1.23 cycle−1 over cycles 2→25,
and is exponential, with a BV doubling time around 70 s.

Another relevant diagnostic is the BV relative nonlinearity
(Gilmour et al., 2001), defined as

RNL(t) = ||xp,m+(t) + xp,m−(t)||
1
2 (||xp,m+(t)|| + ||xp,m−(t)||) , (11)

using the norm in Eq. (4). This measures the nonlinearity of
the flow by comparing the evolution of positive and negative
perturbations. A BV is nonlinear if the sufficient condition
RNL ≥ 0.2 is met (Gilmour et al., 2001). Figure 7 shows RNL

for each forecast. The difference between regular and chaotic
regimes here is clear. The regular regime forecasts are consistently
below RNL = 0.2, and the chaotic regime forecasts all exceed this

value within the first ten cycles. The only general trend among the
SV forecasts is that the relative nonlinearity of F and G (higher
�) is generally higher than for D and E.

Finally, some authors (Toth and Kalnay, 1993; Houtekamer
and Derome, 1994; Corazza et al., 2003) argue that BVs are
representative of analysis uncertainty because of the similarities
between the analysis cycle and the breeding cycle. We looked
for positive correlations between the spread of analysis values
generated using our data assimilation scheme and the spread
of BVs at the same time. The correlations were not particularly
strong, but the spatial distributions were sufficiently similar to
support a connection. The BV spread was typically an order of
magnitude smaller than the analysis error for 2S and 3AV, and
was comparable for 3SV.

3.2. Main forecasts: general observations

3.2.1. Steady waves: forecast A

The two forecasts in the steady regime 2S are generally good,
with the large-scale wave structure maintained throughout the
forecast. Forecasts A1 and A2 represent the best predictability
that can be hoped for in this work.

At a single point the observations are well-predicted, shown in
Figure 8(a). There are oscillations at t ∼ 8400 s and t ∼ 9400 s,
which appear to be inertia-gravity waves close to the inner
cylinder. They do not obviously appear in the observations, but
this is not particularly surprising as their presence in model runs
is sensitive to the forcing parameters. These features may be
generated by a boundary-layer instability (Jacoby et al., 2011).

Forecast A2 is shown using spaghetti plots in Figure 9. These
show the ensemble following the observations closely until the

(a)

(b)

(c)

Figure 8. Time series showing the radial velocity at R = 3.0 cm, φ = 0.0 rad,
z = 4.3 cm. This point is in the jet stream near the inner part of a cyclone in the
3SV observations. The ensemble forecast values are shown by solid lines, and the
observed values (interpolated to the same point) are shown by dotted lines with
the approximate error shaded. (a) Forecast A2 (2S), (b) forecast B2 (3AV), and
(c) forecast G1 (3SV).
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Figure 9. Sequence of spaghetti plots showing forecast A2 (2S, � = 0.775 rad s−1) at z = 9.7 cm. Frames are separated by 100 s, and the final frame is at t2 + 970 s.
Each frame shows the � = 0 streamfunction contour for each of the positive ensemble members (black solid), negative ensemble members (black dotted), control
forecast (brown solid), ensemble mean (blue solid), and observed vector velocity field (red arrows). Note that in this instance all these lines are on top of each other
– this is not the case in later examples.

end of the forecast, with an accurate drift rate relative to the
observations. The forecast spread about the ensemble mean is
small; there is probably no advantage in using an ensemble in this
regime. The ensemble mean x̄B is the average of the forecasts in
the ensemble (excluding the control forecast), and the forecast
spread σ B

x̄ is the standard deviation of values around it.
Plots of the normalised root mean square error (RMSE)

are shown in Figure 10(a). The RMSE measures forecast
accuracy, using the difference between forecast and observations,
and this difference is normalised by the climatological
RMS variance, at each observation location. For a forecast
of N forecast–verification pairs [fn, on] each with weight
wn and observational climatological RMS variance cn, the

RMSE is
√∑N

n=1 wn{(fn − on)/cn}2. We use horizontal velocity

magnitudes (i.e. ‘wind speed’) for this calculation, as this uses all
the observational information. Our observations are distributed
non-uniformly in space, so we assign a normalised weight wn

to each pair based on a simple estimate of local observation
density (Young and Read, 2013). The RMSE for this regime
shows that it may be predictable for much longer than the
available data, as the RMSE is not increasing. If these forecasts
were longer, predictability would eventually be lost by the forecast
and observations going out of phase.

Tracking individual features in the flow can be used
to decompose the RMSE into components representing
displacement, amplitude, and residual contributions (Hoffman
et al., 1995). In the annulus, these correspond to error due to
(i) the azimuthal displacement of the large scale wave relative to
observations;
(ii) error in the amplitude of the large-scale wave; and
(iii) a residual term due to small-scale features.
These diagnostics are particularly interesting as they reveal the
error due to a poor drift rate calculation, and the error left once
the position and shape of the wave have been corrected; this
represents the ‘true’ error in the model, which cannot be removed
by simple transformations.

We calculated this decomposition using the control forecasts.
The forecast was rotated by a range of azimuthal angles to find the
rotation minimising the horizontal velocity magnitude RMSE.
Second, the amplitude of the rotated field was multiplied by
values in the range 0–4 to find the minimum RMSE. This
gave three model fields (forecast, displaced, and amplified),
which were used to calculate the displacement (forecast–
displaced), amplitude (displaced–amplified), and residual errors

(amplified–observations) by calculating the RMSE between the
different fields.

Figure 11(a) shows the RMSE decomposition, again normalised
by the climatological RMS variance. The accurate drift rate for the
2S forecasts is confirmed; only a small fraction of the total RMSE
is attributed to displacement error, while most is attributed to
residual error. There is a small fraction attributed to amplitude
error, because in the forecast there is a small vacillation in the
dominant wave which does not appear in the observations.

A different approach to forecast verification is to evaluate
forecast skill, which quantifies the accuracy of a probability
forecast against a reference (Woodcock, 1976). We use the Brier
skill score (Brier, 1950; Wilks, 2001) here:

BSS = 1 − BSf

BSc + 1
M p1(1 − p1)

,

where BSf and BSc are the Brier scores for ensemble and
climatological reference forecasts respectively. The Brier score
is a RMS probability forecast error for yes/no outcomes (e.g.
rain/no rain, or wind speed above a certain value), and is defined
for N forecast–observation pairs [pn, dn] with weights wn as
BS = ∑N

n=1 wn(pn − dn)2. pn is calculated from the ensemble or,
in the climatological reference case, from the climate distribution
of a particular quantity, and dn is either zero or one depending on
whether the event occurs or not. Our BSS includes an additional
bias correction term (Weigel et al., 2007). (M is the size of
the ensemble, and p1 is the climate probability of the ‘yes’
outcome.) In the annulus context any ‘event’ is arbitrary, but a
threshold on the horizontal velocity magnitude seems natural, so
we predict whether the observations exceed the 60th percentile
of the horizontal velocity magnitude climate distribution at each
point in the tank.

The predictability limit for a forecast based on skill is defined as
the point when the BSS falls to zero. We estimated 95% confidence
intervals for our BSS values using bootstrapping (Mason, 2008).
The forecast–observation pairs used to calculate the BSS were
randomly resampled, with replacement, to get a sample the same
size as the original dataset. The sample score was then calculated
and this was repeated 1000 times, giving a distribution of values
from which the 95% interval was extracted. We defined the
predictability limit as the first time when the 95% confidence
interval included zero. Figure 12(a) shows the BSS. It confirms
that in the 2S forecasts skill relative to the climate forecast was
retained until the end of the forecast, consistent with the RMSE.
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(a) (b)

(c) (d)

(e)

Figure 10. Time series of RMSE using the horizontal velocity magnitude field for representative forecasts in the three regimes. The different vertical levels are shown
in different colours. The shaded regions show the 10–90th percentiles of each ensemble, solid lines are ensemble means, and dashed lines are control forecasts. The
errors are normalised by the climatological RMS variance at each observation point. Absolute RMS errors are typically 0.02–0.2 cm s−1. (a) Forecast A2 (2S), (b) B1
(3AV), (c) B2 (3AV), (d) D2 (3SV), and (e) G2 (3SV).

3.2.2. Amplitude vacillation: forecasts B and C

These four forecasts are in the 3AV regime close to the transition
between the 3AV and the 2S regimes, and have the wave’s
vacillation to predict in addition to its position. Spaghetti plots
for forecast B2 are shown in Figure 13, and individual ensemble
member pressure fields are shown for a point during forecast B2
in Figure 14(a). Predictability is lost in the 3AV forecasts by two
main mechanisms.

First, the estimate of wave drift in the forecast compared with
the observations is generally poor, which leads to a loss of forecast
quality as a result of forecast drift. B1 and C1 lose predictability by
this mechanism, and the reason this drift is poorly estimated was
discussed in the previous section.

Second, in forecasts B2 and C2 predictability is lost primarily
by an azimuthal wavenumber transition from m = 3 → 2. This
was not expected. An example is shown in Figure 15, where
the dominant wave changes during the forecast to m = 2. In
B2 seven of the 16 perturbed ensemble members transition to
m = 2, and in C2 all 16 perturbed ensemble members (plus

the control forecast) transition to the lower wavenumber. A
number of reasons why these transitions occur are discussed in
section 4.

Figure 8(b) shows the evolution of the B2 ensemble at a single
point. The transition is around t = 5200 s as the ensemble splits
into two parts for the m = 3 and m = 2 ensemble members. In
the equivalent plot for C2 (not shown), the transition is not as
obvious as in B2, because in that case all ensemble members
transitioned. While B1 and C1 go out of phase over time in such
a way that could be corrected by a simple azimuthal translation,
this is not the case in C2, where the wave’s fundamental nature
has changed.

RMSE diagnostics are shown in Figure 10(b,c), showing one
case (B1) where predictability is lost via forecast drift, and another
(B2) where it is lost primarily by a wavenumber transition. In
B1, where there is no transition, the spread of RMSE is smaller
than in B2. Overall, the RMSE in the 3AV forecasts is higher
than in 2S, and it continues to increase over the course of the
forecasts. There is an oscillation on the vacillation time-scale
caused by the mismatch in vacillation periods between forecasts
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(a) (b) (c)

(d) (e) (f)

Figure 11. Decomposition of the RMSE at z = 9.7 cm for several forecasts, normalised by the climatological RMS variance at each observation point. Dark grey
represents displacement error, medium grey is amplitude error, and light grey is residual error. (a) Forecast A2 (2S), (b) C1 (3AV, no wavenumber transition), (c) C2
(3AV, with wavenumber transition), (d) E1 (3SV), (e) E2 (3SV), and (f) G1 (3SV).

(a) (c)(b)

Figure 12. Time series of Brier skill scores for representative forecasts at z = 9.7 cm in the three flow regimes. The 95% confidence intervals are shown as shaded
regions. (a) forecast A2 (2S), (b) forecast C1 (3AV), and (c) forecast D2 (3SV).

and observations. The normalised RMS error grows to somewhat
larger than one but this is not unexpected as the climate of the
model and the observations are not expected to be the same.

The decomposition of the RMSE is shown for forecasts C1
and C2 in Figure 11(b,c), showing cases with and without a
transition in the control forecast. There is a clear difference in the

character of the decomposition between the two mechanisms of
predictability loss. In the forecast drift case (C1), the displacement
error becomes dominant quickly due to the drift between forecast
and observations. In C2, before the transition at ∼2800 s there is
little displacement error. After the transition, the displaced field
still does not offer much of an improvement over the original,

Figure 13. Sequence of spaghetti plots showing forecast B2 (3AV, � = 0.825 rad s−1). The final frame is at t2 + 970 s. Other details are as Figure 9.
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(a) (b)

Figure 14. Two ensemble forecasts in the 3AV and 3SV regimes (Figure S10, Document S1, shows other forecasts). Each frame shows the pressure field over a
horizontal slice at z = 9.7 cm for the control forecast, ensemble mean, eight positive perturbed forecasts, and eight negative perturbed forecasts. For comparison, the
observed velocity field is shown in the top left. (a) forecast B2 (3AV) at t = 5405 s (t2 + 970 s), and (b) forecast G2 (3SV) at t = 9270 s (t2 + 550 s).

(a)

(b) (c)

Figure 15. Example of a wavenumber transition in forecast B2. (a) Amplitudes
of the first six temperature azimuthal wave modes at mid-height/mid-radius in
ensemble member 1+, with colour key. Amplitudes of temperature modes (b)
m = 2 and (c) m = 3 for all ensemble members.

so the displacement error remains small and the residual error
becomes large. In C1 the residual error is approximately constant,
which is not surprising as, once the shift is corrected for the
general shape of the wave, it is well forecast. It was expected
a priori that amplitude error might be important in this regime
as the vacillation is an important feature of the flow, but in
general the amplitude error is small compared with the other
components.

Figure 12(b) shows the Brier skill score for forecast C1. In
general the BSS in this regime is poorer than in the 2S forecasts,
with skill being lost over a few hundred seconds. As above, runs
which lose predictability by wavenumber transition either have
similar (C2 versus C1) or better (B2 versus B1) scores than the
forecasts that lose predictability by forecast drift, implying that

wave drift reduces forecast skill more quickly than wavenumber
transitions.

3.2.3. Structural vacillation: forecasts D–G

The eight SV forecasts are illustrated by a representative sequence
of spaghetti plots in Figure 16, and by part of the G2 forecast
in Figure 14(b). It is immediately clear that these forecasts are
fundamentally different from the forecasts in the regular regimes.
First, the spread of the ensemble is faster than in the regular
regimes, which was expected as the model is chaotic in this part
of the regime diagram.

Like forecasts B2 and C2, the main feature of these forecasts
leading to loss of predictability is wavenumber transition, this
time from m = 3 → 4. Three ensemble members from a typical
case are shown in Figure 17, some transitioning and some not. In
the 3SV regime there are almost always some ensemble members
which transition (except E2, where there are none), which suggests
that the model may not be able to sustain these initial conditions.
Notice in each case the initial rapid decay of the m = 3 mode,
even in the case where there is no transition.

Each of the forecasts in this regime follows the same general
pattern. First, the dominant wave decays rapidly (over about
200 s) to an almost axisymmetric state; this can be seen in the first
frames of Figure 16. The waves then regrow in one of three ways.
First, they can reform as m = 3 waves, with ensemble members
generally in phase (D2, E1, E2, and Figure 16). Second, they can
reform as a mixture of m = 3 and m = 4 waves, with the reformed
waves generally in phase (D1, G1, G2). Both these cases imply that
the original wave does not decay completely, as otherwise phase
information would be lost. Third, the waves reform as a mixture
of m = 3 and m = 4, but with no phase coherence between the
reformed waves (F1 and F2).
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Figure 16. Sequence of spaghetti plots showing forecast E2 (3SV, � = 2.6 rad s−1). Frames are separated by 60 s, and the final frame is at t2 + 550 s. Other details are
as Figure 9. Figure S9 of Document S1 shows spaghetti plots for the other forecasts.

(a)

(b)

(c)

Figure 17. Example of wavenumber transitions in forecast F2, showing the
amplitude of the first six azimuthal temperature wave modes over the forecast
(mid-height/mid-radius). Colours are the same as Figure 15. (a) Ensemble
member 6+ (no transition), (b) ensemble member 8+ (transition to m = 4), and
(c) ensemble member 4− (final wavenumber unclear).

In each forecast the number of ensemble members that
transition from m = 3 → 4 is variable, from four or fewer in
D2, E1, and E2 to twelve or more in D1, F2, and G1. In some
forecasts (mainly F and G) there is also some transient m = 2
and m = 5 behaviour. Sometimes it is not possible to determine
the wavenumber at the end of the forecast, e.g. Figure 17(c). The
number of ensemble members whose dominant wavenumber
cannot be determined generally increases with �, and this seems
to be the only aspect of the 3SV forecasts that does.

When most of the ensemble members remain m = 3 the main
source of error is wave drift, but this is generated by a different
mechanism to the regular regimes. The drift is caused by a single
shift of about 30◦ in the negative φ direction near the start of the
forecast as the original waves decay. After this the drift does not
change much, because the forecast drift is generally well-estimated
for 3SV (Figure 4(c)).

Representative plots of the RMSE are shown in Figure 10(d,e)
for forecasts D2 and G2. The main difference from the regular
regimes is that there is always a spread of RMSE values in the
3SV forecasts. In each forecast there is an initial rapid increase in
RMSE over about 200–300 s before the values plateau for the rest
of the forecast; the spread of values reaches a maximum around
the same time. The maximum RMSE and the final spread of
values is similar for each forecast.

A representative example of the behaviour at a single point
is shown in Figure 8(c), typical of all these plots in this regime.
The observed values do not change much over the course of
the forecast because the wave is phase-locked to the tank (see
later). The forecasts remain in the same range as the observations,
and the ensemble diverges after a few hundred seconds. Over
the 3SV forecasts our general impression is that radial velocity
at this point in the flow is reasonably well-estimated, azimuthal
velocity is overestimated (too negative), and horizontal velocity
magnitude is overestimated (latter two not shown).

The RMSE decomposition takes a number of forms in the
3SV forecasts (Figure 11(d)–(f)), depending on whether the
control forecast transitions from m = 3 → 4 or not (recall that
only the control forecast is analysed). In cases when the control
forecast transitions (F2 and G1 only, e.g. Figure 11(f)), the
displacement error is small compared with the residual error.
When the forecast does not transition, the displacement error is
either small compared with the residual error (E1 and G2, e.g.
Figure 11(d)), or it is initially small but increases rapidly after
100–200 s to 30–50% of the total RMSE (D1, D2, E2, and F1, e.g.
Figure 11(e)). Which of these two latter scenarios occurs depends
on how the wave is shifted when the dominant wave decays and
reforms: if the wave shifts considerably then the displacement
error is large.

Figure 12(c) shows the Brier skill score for forecast D2. One
might expect that once the wave decays and reforms the forecast
ensemble should lose all skill, but this seems not to be the case
in the 3SV forecasts. At z = 9.7 cm the BSS does not fall to zero
within 95% confidence limits, however at z = 4.3 cm in several
cases BSS< 0 even at the beginning of the forecast, and in all cases
skill is generally poorer there.

3.3. Main forecasts: comparative analysis

The RMSE median† values for each forecast are shown as time
series in Figure 18; there is a clear difference between the three
regimes in these plots. The 2S forecasts (black) consistently
perform best, and have the smallest spread of values over their
ensembles (not shown). The 3AV forecasts (blues) have the
poorest scores by the end of the forecasts, although the growth
of the RMSE is slower than for 3SV. It is interesting that, in a
given flow regime, the RMSE is approximately the same whether

†Median is used here instead of the ensemble mean as quite often the ensemble
mean performed better than the entire ensemble, as the ensemble mean acts
to filter out outliers. The median value here is the median of the individual
ensemble members’ scores – not the score of the median forecast.
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Figure 18. Time series of RMSE for the 14 forecasts, calculated at z = 9.7 cm
for the horizontal velocity magnitude field from the start of each forecast, and
normalised by the climatological RMS variance at each observation point. Colour
key is as in Figure 7. Each line represents the median value over the 16 perturbed
ensemble members.

predictability is lost via forecast drift or wavenumber transition.
The only clear difference between runs B and C is that the partial
transition of the ensemble to m = 2 in forecast B2 is reflected in
the large range of RMSE values in individual ensembles, while in
the other cases the range is small. The 3SV forecasts (greens/reds)
generally score intermediate between the first two regimes. The
initial growth rate of RMSE is faster in 3SV than for 3AV but in
the RMSE the saturation value is lower than 3AV. There is little
spread of median values between different forecasts, despite the
large spread of values within individual ensembles.

These results suggest that the RMSE is robust to small-scale
differences between forecasts, and depend more sensitively on the
regime the forecast is in. We define our measure of predictability
based on forecast accuracy by the time taken for the RMSE to
reach the climatological RMS variance. At z = 9.7 cm this gives
typical predictability times of longer than the forecast for 2S, 500 s
for 3AV, and 200 s for 3SV.

Time series of the Brier skill score for each of the forecasts are
shown in Figure 19. As with the RMSE there is a clear difference
between the three regimes. We define the length of a skilful
forecast as the time before zero skill is reached within the 95%
confidence limits for each forecast (corresponding to BSS around
+0.1 in each case). Both the 2S and 3SV forecasts retain skill at
z = 9.7 cm for the whole forecast, with 2S marginally more skilful.
The 3AV forecasts lose skill quickly, with BSS going to zero after
300–500 s. Even though the 3SV forecasts diverge rapidly and
briefly lose their wave structure, they retain skill throughout the
forecasts at the upper observation level. However, at z = 4.3 cm
even in the 2S regime most forecasts begin with skill either below
or just above zero. The spread of skill scores between 3SV forecasts
is small at both levels, indicating that these values may represent
robust estimates of the general performance of forecasts in this
regime, as the values change little with � or when the forecasts are
repeated.

The difference between the two vertical levels and the skill of
the 3SV forecasts can be partially explained using the forecast
uncertainty statistic. This is an intrinsic measure of observational
uncertainty, is derived from the Brier score (Murphy, 1973;
Young, 2010), and is independent of the forecast probabilities.
Figure 19 shows this statistic at z = 9.7 cm for all the forecasts,
with values around 0.15 for the 3SV cases. By contrast, at
z = 4.3 cm these values are 0.21–0.25, so the 3SV observations
are intrinsically more difficult to predict at the lower level.
Furthermore, at z = 9.7 cm the 3SV uncertainty is lower than for
2S and 3AV, which may help to explain the better BSS scores
for 3SV than for 3AV at this level. Based on these results, at
z = 9.7 cm we found the Brier skill score gives predictability
times longer than the forecast for both 2S and 3SV forecasts, and
400 s for 3AV.

(a)

(b)

Figure 19. Probability score time series for all 14 forecasts: (a) Brier skill score, and
(b) forecast uncertainty obtained by decomposing the Brier score, at z = 9.7 cm.
Both use the colours in Figure 7.

The three components of the control forecast RMSE
decomposition are shown for each forecast in Figure 20.
These plots reveal how well the different regimes might be
forecast by MORALS if errors from displacement and amplitude
were removed. The residual error represents the forecast
error once the displacement errors are minimised (by better
estimation of the drift rate) and once the amplitude errors are
minimised (if future wave vacillation is predicted). Residual
error is generally the largest, except where there is significant
displacement error. There is little amplitude error except in the
3AV runs.

Using these plots we can try to determine the major sources
of error in annulus forecasts. The most interesting plots are
of residual error, as they show how the simulation represents
the experiment once other errors have been removed. Note
that these are typically constant in time, in contrast with the
displacement error. To compare the residual error between
regimes it is necessary to discard forecasts where the control
forecast transitions, because the reason for the residual error is
clear in these cases. The remaining cases (Figure 20(d)) show
the 2S forecasts have the lowest residual error, followed by the
3AV forecasts, and the 3SV residual error is the largest. These
results are different from the scores discussed above, which
rank 3AV poorer than 3SV in most cases, but this residual
error represents a more robust estimate of the intrinsic error
in MORALS’ simulations of flow in the rotating annulus. This
plot may be the best estimate of the true predictability of the
annulus using MORALS, as errors that could be minimised
without changing MORALS itself have been removed, and hence
the residual errors reflect the model error in the different
regimes.

Along with the measures discussed above, three other
measures of predictability were computed. The time series
of wave amplitudes (e.g. Figures 15 and 17) can be used to
compute the time the first wavenumber transition occurs in each
ensemble member. The median time over the ensemble is used
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(a) (b)

(c) (d)

Figure 20. Components of RMSE decomposition for the control run in each of the 14 forecasts. This uses the horizontal velocity magnitude with the colours in
Figure 7, and is normalised by the climatological RMS variance at each observation point. (a) Displacement error, (b) amplitude error, (c) residual error, and (d)
residual error omitting forecasts whose control runs transition in wavenumber (C2, F2, and G1).

Table 2. List of predictability times (s) for each of the regimes in the FANFARE
forecasts, based on the horizontal velocity magnitude |(u, v)| at z = 9.7 cm (except
single point divergence, at z = 4.3 cm). Each estimate is intended to be accurate

to within ±100 s.

Regime 2S 3AV 3SV

Forecast accuracy >1300 500 200
(RMSE)
Forecast skill (BSS) >1300 400 >1200
Single point >1300 500 200
divergence time
Transition time N/A 500 200
Wave decay time N/A N/A 100

to measure the transition time, as it represents the time after
which an accurate prediction of the large-scale structure of the
flow disappears. Second, the time taken in the 3SV forecasts for
the original wave to decay to a minimum can be measured as
the wave decay time. Finally, we can use the evolution of the
ensemble at a single point (specifically the point at R = 3.0 cm,
φ = 0.0 rad, z = 4.3 cm as used in Figure 8), to measure a
single point divergence time, which is either the time before the
ensemble values depart from the observed values, or the time
the ensemble begins to diverge. Combining these measures with
those above gives a detailed picture of the predictability of the
rotating annulus in these flow regimes, which is summarised in
Table 2.

4. Wavenumber transitions

A major feature of the 3AV and 3SV forecasts is that in several cases
ensemble members transition to other azimuthal wavenumbers.
This is an important property of the flow the forecasts failed to
predict, so a reason should be sought.

4.1. The shape of the breeding vectors

Some of the breeding vectors have structures that might help to
explain why the transitions occur. Note that, if only part of the
ensemble transitions, then differences between individual BVs
must determine which forecasts transition and which do not.
In both forecasts B1 and B2, the BVs used to start the forecasts
contain perturbations with both m = 2 and m = 3 structures.
A comparison was done in each forecast to see whether there
was a correlation between the dominant mode in the BVs and
whether the subsequent ensemble member transitioned, but no
significant correlation was found.

One case where the BVs did correlate with transitions,
however, was forecast B2 (Figure 14(a)). Apart from one pair
of +/− perturbations (out of eight), if the positive perturbation
transitioned from m = 3 → 2 then the negative perturbation did
not, and vice versa. Forecast B2 was the only 3AV case where the
ensemble split in this way.

4.2. A shock to the initial conditions?

A comparison between forecasts in the 3SV regime and a
standalone model run using the same parameters suggested that
the forecasts are less regular than the standalone run in this
regime. When the simulation runs by itself the shape vacillation
is less pronounced than at the start of the forecasts, when the flow
is disturbed considerably (Figure 16). This suggests some kind of
shock occurs in the flow as the forecasts start, as if the simulation
cannot support the initial flow state.

This might be a combination of the assimilation method used
and the flow regime (it does not happen in the regular regimes).
The model is used to update the analysis to produce a new
background state between assimilations, but the AC technique
does not guarantee the sequence of analyses is consistent with the
past evolution of the forecast model. The analysis produced by AC
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could be so far off the model manifold in the 3SV regime that the
model cannot support the flow structure when left to run by itself.

4.3. The effect of bottom topography

A change in tank geometry could place the forecasts in a different
flow regime to the observations. Some regions of the flow in
datafiles expf5 and expf6 have no particles at the observation
levels – velocities are small there, so particles may sink to
the bottom and form small piles, changing the geometry of
the annulus and possibly locking the observed wave to the
topography. MORALS cannot include bottom topography, so
we ran two simulations using the Imperial College Ocean
Model (ICOM) (Piggott et al., 2008), with and without bottom
topography (Figures S4 and S5, Document S1). The flat-bottomed
ICOM simulation did not resemble 3SV flow produced by
MORALS at the same point in parameter space, however, or
the observations in this regime; the two models seem to have
different systematic errors. Therefore it was not possible to make
any firm conclusions from these simulations about the effect of
topography on the forecasts.

4.4. Hysteresis

Hysteresis is a phenomenon where a system can support more
than one regime of behaviour at a particular point in its
parameter space, and the behaviour observed depends on how
the point in parameter space is approached (Miller and Butler,
1991). It was first observed in annulus experiments in the 1950s
(Fultz, 1960).

The AV forecasts are just on the 3AV side of the 2S/3AV
transition identified by Young and Read (2008b), but perhaps
m = 3 is not the only stable wavenumber on the 3AV side
of this transition. To test this, we ran a series of simulations
keeping �T constant at 4.04 K but stepping up � by 0.01 rad s−1

every 2000 s, starting at � = 0.67 rad s−1 (2S in the Young and
Read, 2008b, regime diagram) and finishing at 1.30 rad s−1. A
second sequence was run stepping down at the same rate from
� = 0.75 rad s−1 (3AV in the Young and Read, 2008b, regime
diagram) to 0.67 rad s−1. Two thousand seconds appears to be
plenty of time for the wave to stabilise at each �; if there is no
hysteresis the transition should occur at the same point in both
sequences.

Figure 21 shows the results. There is a clear difference
in the transition point between stepping-up (Figure 21(a))
and stepping-down (Figure 21(b)). When stepping down, the
3AV→2S transition is at 0.71 rad s−1, but when stepping up 2S
is stable until 1.19 rad s−1. So, the simulation can support both
m = 2 and m = 3 at the points in parameter space corresponding
to forecasts B and C (0.825 and 0.85 rad s−1). Similar behaviour
is often found in experiments (Sitte and Egbers, 2000).

A similar set of simulations were run in the 3SV regime,
using �T = 4.01 ◦C. The first series stepped up by 0.2 rad s−1

every 2000 s from 1.6 rad s−1 to 5.0 rad s−1 (Figure 21(c)). The
second started at 4.0 rad s−1 and stepped down by 0.2 rad s−1

every 2000 s, ending at 1.6 rad s−1 (Figure 21(d)). These plots
also show hysteresis. When the rotation rate is stepped up there
is no transition at all: the simulation remains m = 3 for the
entire sequence, although the wave changes from 3S to 3SV
around 2.0 rad s−1. When the rotation rate is stepped down, the
simulation begins at 4SV, before transitioning several times to
3SV and back to 4SV before finally changing to 3S at 2.0 rad s−1.
The transition point between 3S and 3SV is the same in both
cases, but the wavenumber transitions are not. The points in
the stepping-down sequence at the rotation rates used in the
forecasts (2.4, 2.6, 2.8, and 3.0 rad s−1) are all predominantly
4SV, while in the stepping-up sequence they are 3SV, and
therefore the simulation can support both waves at the forecast
parameters.

(a)

(b)

(c)

(d)

Figure 21. Amplitudes of the first six azimuthal temperature modes at mid-
height/mid-radius during hysteresis runs. Colours are the same as Figure 15. (a)
Stepping up: 2S→4SV transition (0.67→ 1.30 rad s−1, testing 2S/3AV boundary),
(b) stepping down: 3AV→2S transition (0.75→ 0.67 rad s−1, testing 2S/3AV
boundary), (c) stepping up: high� (1.6→ 5.0 rad s−1, testing 3SV/4SV boundary),
and (d) stepping down: high � (4.0→ 1.6 rad s−1, testing 3SV/4SV boundary).

4.5. Summary

We have gone some way towards explaining why transitions occur
in the forecasts, but no definitive reason has been found. Taken
together, perhaps something like Figure 22 is happening. The
hysteresis tests show that, at the relevant points in the MORALS
parameter space, there exist multiple model attractors. On the
model manifold there may be regions of attraction, represented in
Figure 22 by minima in a potential surface, and each simulation
will eventually fall into one of these attractors depending on its
initial condition. A model trajectory will move towards the model
manifold over time, but an analysis produced using analysis
correction will almost surely not lie on it initially. Unavoidable
model error means that the possible states admitted by the model
(the model climatology) and the possible states of the system
(the ‘true’ climatology) are disjoint; the analysis pulls the state
away from the model manifold towards the ‘true’ manifold, with
the result that the analysis lies on neither. If the position of the
analysis relative to the model manifold moves the initial condition
out of its original basin of attraction, or if the perturbation does
so (as shown in the figure), then the subsequent forecast can tend
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Figure 22. Schematic of a possible model manifold explanation for the
wavenumber transitions in the forecasts.

towards either attractor over time, leading to a possible regime
transition.

Finally, because the forecasts are probabilistic, the cases where
there are regime transitions may in fact reflect the a priori
probability of the real experiments ending up in one of the
two (or more) basins of attraction. Several experimental regime
diagrams indicate that more than one regime can be realised at
certain points in parameter space (Hignett et al., 1985), so the
ensemble forecasts may therefore be more reliable than at first
glance.

5. Conclusions

In this article we addressed two questions about the rotating
annulus laboratory experiment: how predictable is this system,
and can common meteorological techniques be used to study
its behaviour? Building on work by Young Read (2008a, 2008b,
2013) the annulus simulation MORALS, ensemble generation
using breeding vectors, and data assimilation using analysis
correction were combined into a full framework for ensemble
forecasting in the laboratory annulus. This framework was used
to predict the behaviour of regular (2S, 3AV) and chaotic
(3SV) rotating annulus flow, verifying forecasts against laboratory
data.

In general, the relative predictability of the flow regimes was
clear from these forecasts. The 2S forecasts performed well, and
in both 3AV and 3SV forecasts quality and skill was lost either
by azimuthal drift of the dominant wave mode or by a transition
away from the dominant wavenumber in the observations. Several
hypotheses were proposed to explain the transitions, but no main
underlying cause was identified. The model displays hysteresis
in the relevant regions of parameter space, so one possibility is
that these forecasts might reflect an underlying distribution of
the regimes that can be realised at that point in parameter space.
Given sufficient experimental time, this could be tested in the
laboratory.

The flow was typically predictable up to the end of the forecasts
in the 2S regime, for 400–500 s in the 3AV regime, and for
100–300 s in the 3SV regime (Table 2). It is useful to compare
these numbers with other, arguably more ‘intrinsic’, measures
of predictability. Young and Read (2008a) estimated annulus
Lyapunov exponents in the PMS, and they found the Lyapunov
time to be about 4000 and 300 s in regular and chaotic regimes
respectively. Second, regular regime BVs have a doubling time
around 200 s, and the chaotic regime BVs around 70 s (Figure 7).
The relative values of these measures between regular and chaotic
regimes are reflected in our forecast results.

There are places where the forecasts could be improved.
The drift correction significantly improved the quality of the
forecasts, but it could be made more accurate, as the drift rate
varies considerably between regimes (Figure 4). For example,
accounting for the vacillation cycle by using a sinusoidal function
A + Bt + C sin(t/D + E) for the drift instead of the current linear
fit should improve the forecasts in that regime significantly. Also
some form of initialization is usually common in data assimilation

(Charney, 1955; Phillips, 1960), to suppress imbalances between
the fields. AC uses the nudging technique (Hoke and Anthes, 1976)
as an implicit initialization method, but others could be tried.
Finally, ensemble generation based on parameter perturbation
could be attempted. This would perturb the values of � and �T
used for the forecasts instead of the initial conditions. Such an
approach might be useful because the � shift between observed
and simulated parameter space is only known to within about
±0.02 rad s−1.

This work has shown that methods used for forecasting
planetary atmospheres through operational weather forecasting
can also be applied to the laboratory experiment. These methods
were set up in a similar way to their operational implementation
and were used to forecast data from the laboratory experiment.
The next stage would be to identify specific new methods that
might benefit from rigorous analysis in this system. Perhaps the
most suitable would be those that are not yet in operational
use, because those that are have already been tested under
many situations encountered in operational practice. One such
promising technique is gradient descent/shadowing (Judd, 2003;
Judd et al., 2008).

One other method that is now popular is the Ensemble Kalman
Filter (EnKF; Evensen, 1994). Zhang and Snyder (2007) list a
number of challenges which implementation of the EnKF had
not overcome at the time of writing, and some of these could
be addressed using the annulus. Model error and bias are major
challenges for the EnKF because the model is used to propagate
the error covariances forward in time. It might be fruitful to
study this in the annulus, where specific sources of model error
might be more easily identified than in atmospheric models.
The EnKF has already been implemented in the annulus by
Ravela et al. (2010), so their method might be a good place to
start.
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