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1 Estimate of deformation radius

Showman et al. [1] define the Rossby deformation radius as LD = NH/f , where N is the Brunt-Väisälä (buoyancy)
frequency N =

√
g ∂ ln θ/∂z, H is the pressure scale height, and f = 2Ω cosφ is the Coriolis parameter. θ is

potential temperature, z is vertical position, Ω is the rotation rate of the planet, φ is latitude, and g is gravity.
Following their method and assuming an isothermal, hydrostatic atmosphere with equilibrium temperature Te, the

hydrostatic equation gives a pressure scale height H = RdTe/g, where Rd is the specific gas constant. Relating
potential to absolute temperature in an isothermal atmosphere we get

∂ ln θ

∂z
= −κ

p

∂p

∂z

where κ = Rd/cp, and cp is the specific heat capacity. Using the hydrostatic equation and the ideal gas law we obtain
the buoyancy frequency N = g/

√
Tecp, and combining with the scale height we get the deformation radius

LD =
Rd

2Ω sinφ

√
Te
cp

By a simple energy balance we have Te = (S(1−A)/4σ)1/4, where S is the solar constant at Jupiter, A is the (bond)
albedo, and σ is the Stefan-Boltzmann constant. Hence as a function of latitude the deformation radius is

LD =
Rd

2Ω
√
cp

[
S(1−A)

4σ

]1/8
1

sinφ

Putting in the numbers, Rd = 3750 J K−1 kg−1, cp = 12 360 J K−1 kg−1 [2], S = 50.66 W m−2, A = 0.343 [3],
Ω = 1.758 65× 10−4 rad s−1 [4], and σ = 5.670 373× 10−8 W m−2 K

−4, gives

LD ≈
1000 km

sinφ
(S1)

Using latitudes from φ = 20 − 40◦, we get LD = 1600 − 2900 km. For a typical midlatitude φ = 30◦ we
have LD ≈ 2000 km. This agrees reasonably well with other estimates, e.g. Read et al. [5] (1200–2300 km over
φ = 20− 40◦) and Achterberg & Ingersoll [6] (200–1500 km at φ = 30◦, depending on atmospheric composition).
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2 Expected form of the second order structure function for a Jupiter-like kinetic
energy spectrum

We can relate the kinetic energy spectrum for a 2D turbulent flow to the second order structure function 〈δu2L〉 =
〈δu2L〉(r) using some results from Davidson [7]. For homogeneous, isotropic turbulence the 1D energy spectrum
(E1(k) in his notation) and the autocorrelation function 〈u · u′〉 = 〈u · u′〉(r), where u = u(x), u′ = u(x + r), and
r = |r|, are related by the following transform pair [7, equation (8.37)]:

E1(k) =
1

π

∫ ∞
0

〈u · u′〉 cos(kr) dr 〈u · u′〉 = 2

∫ ∞
0

E1(k) cos(kr)dk (S2)

This transform is the same for 2D and 3D turbulence [P. Davidson, personal communication]. Next we consider the
diagonal elements of the second-order velocity correlation tensor in 2D turbulence [7, after equation (10.27)]:

Qii = 〈u · u′〉 =
u2

r

∂

∂r
(r2f) (S3)

where f = f(r) is the longitudinal velocity correlation function [7, equation (3.13)]. In 2D turbulence [7, p. 565]

u2 = 〈u2x〉 = 〈u2y〉 =
1

2
〈u · u〉 (S4)

and this is a constant. Add and subtract 2u2 from equation (S3) and rewrite in differential form:

〈u · u′〉 =
u2

r

∂

∂r
(r2f)− 2u2 + 2u2

=
u2

r

∂

∂r
(r2f)− u2

r

∂

∂r
(r2) + 2u2

= − 1

2r

∂

∂r
(2u2(1− f)r2) + 2u2 (S5)

The correlation tensor Qxx and the second order structure function 〈δu2L〉 are related by [7, p. 582, changing his
structure function notation to that used elsewhere in this paper]

Qxx(rêx) = u2f(r) = u2 − 1

2
〈δu2L〉 (S6)

We can re-arrange this equation to obtain the structure function:

〈δu2L〉 = 2u2(1− f) (S7)

Substituting the right hand side into equation (S5) above we obtain

〈u · u′〉 = − 1

2r

∂

∂r
(r2〈δu2L〉) + 2u2

2u2 can be replaced with 〈u · u′〉 using equation (S4), so substituting this in and rearranging for 〈δu2L〉 we can write
the longitudinal 2nd order structure function 〈δu2L〉 in terms of the autocorrelation function 〈u · u′〉

〈δu2L〉 =
2

r2

∫
r
(
〈u · u〉 − 〈u · u′〉

)
dr (S8)

which can be calculated starting from the 1D energy spectrum E1(k), using equation (S2). This analytical result is
an indefinite integral, valid for r > 0 only, with the constraint 〈δu2L〉 = 0 at r = 0. In practice it must usually be
evaluated numerically for discrete values of r as the definite integral

〈δu2L〉(r) =
2

r2

∫ r

0

r′
(
〈u · u〉 − 〈u · u′〉(r′)

)
dr′ (S9)
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In the Jupiter case, we can evaluate equations (S2) and (S9) directly using the measured eddy kinetic energy spectrum,
but it is also instructive to consider an idealised case where the measured spectra are approximated by a flat region at
low wavenumber and a −5/3 power-law slope at high wavenumber:

E1(n) =

{
E0 n < n1
E0 (n1/n)

5/3
n ≥ n1

where n = 2πa/r is the non-dimensional wavenumber. Davidson [7, p. 91] defines k = π/r so we write E1 in terms
of k by combining these two to get n = 2ak:

E1(k) =

{
2aE0 k < k1
2aE0 (k1/k)

5/3
k ≥ k1 k1 = n1/(2a)

(S10)

Equation (S10) was fit to datasets G14g and C11 using nonlinear least squares in log-log space, giving the parameters
in Supplementary Table 2. Supplementary Figure 1 shows the fits. At r = 0 the integral in equation (S2) is straightfor-
ward and gives 〈u·u〉 = 10aE0k1 analytically. 〈u·u′〉must be found numerically as the integral

∫∞
k1
k−5/3 cos(kr)dk

doesn’t have a straightforward analytical solution. Supplementary Figures 2 and 3 show the resulting autocorrelation
function 〈u · u′〉 and 2nd order longitudinal structure function 〈δu2L〉 predicted from our measured spectra and the
fitted spectra using equation (S10).

Supplementary Table 1: Parameters fitting equation (S10) to the eddy kinetic energy spectra. Note
that only one of n1, k1, and r1 is a free parameter. Errors are standard deviations in the fitted values. The
last two columns are included for information.

Dataset E0 (J kg−1) n1 k1 (m−1) r1 (km) 〈u · u〉 (m2 s−2) |u| (m s−1)

G14g 3.4±0.1 62.37±0.08 (4.461±0.006)×10−7 7043±9 1060±30 32.6±0.5
C11 2.9±0.1 47.09±0.09 (3.368±0.007)×10−7 9330±20 680±20 26.1±0.5

The 2nd order structure function that emerges has the following properties:

• It is flat for medium-large separations (which we observe in the measured structure function) due to the flat part
of the spectrum at k < k1.

• For small separations the structure function begins close to r2/3 but rapidly becomes shallower as it transitions
to flat (which we also observe).

• The range of observed separations where pure r2/3 is expected is very narrow (up to at most r ≈ 1000 km).

If the flat part of the spectrum is removed and the calculation repeated withE1(k) = 2aE0(k1/k)5/3, then the structure
function reverts to the r2/3 form (Supplementary Fig. 3, dotted lines).

There are some quantitative differences between the expected (Supplementary Fig. 3) and the measured (Supple-
mentary Fig. 2) structure functions:

• The measured structure function is about 50-60% of the expected magnitude.

• The value of r where the expected structure function flattens out is a factor ∼2–3 larger than measured.

However, there are several details about the comparison that mean one should not expect quantitative agreement:

• The definition of the measured energy spectrum will be slightly different (i.e. with a different normalisation
factor, being defined in terms of spherical harmonics, and with different definitions of wavenumber) from the
definition used in the integral transform between the the energy spectrum and the autocorrelation function used
above [7, equation (8.37)].
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Eddy kinetic energy spectrum and fit
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Supplementary Figure 1: Measured Jovian eddy kinetic energy spectra E1(k) and fits using equa-
tion (S10). Measured energy spectra from datasets G14g and C11 are shown in solid black and red
respectively. Fits are shown as dashed lines.
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Supplementary Figure 2: Autocorrelation function 〈u · u′〉 derived from the kinetic energy spectra
using equation (S2). Lines and colours are as Supplementary Fig. 1. The vertical lines indicate r1 for
each dataset. The circles on the y-axis indicate the values that the black and red curves tend towards as
r → 0, i.e. 〈u · u〉 = 10aE0k1. Oscillations about zero in the fitted curves near k1 are due to the Gibbs
phenomenon, as dE1/dk is discontinuous there.
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Second order longitudinal structure function
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Supplementary Figure 3: Expected 2nd order longitudinal structure functions using the measured
kinetic energy spectra from Jupiter and equation (S9). Lines and colours are as Supplementary Fig. 1.
The dotted lines show the case E1(k) = 2aE0(k1/k)5/3, which results in pure r2/3 scaling.

• There are differences in the data and data processing when computing the measured spectra (from gridded
mosaics) and the structure functions (using individual velocity vectors, which have a larger variance than the
gridded data, see Supplementary Fig. 5). See, for example, the blue line in Fig. 3a in the main text, which is the
energy spectrum using just the individual images. The n−5/3 range is somewhat smaller in that case.

• The calculation assumes both homogeneity and isotropy, neither of which we expect to be perfectly satisfied in
Jupiter’s atmosphere.

• The curvature of the planet’s surface will have some effect on the measured structure function.

A note on isotropy This calculation assumes the flow is isotropic. It is useful to check that this is reasonable
for the Jupiter data within the separation range of interest (i.e. up to the jet scale). One expects Jupiter’s flow to be
anisotropic at large scales due to its rapid rotation, but there is no a priori reason why it shouldn’t be isotropic at small
scales, at least horizontally. One can use a relationship between 〈δu2L〉 and 〈δu2T 〉 to check whether the flow is isotropic
[8, equation (53)]:

〈δu2T 〉 =
d

dr

(
r〈δu2L〉

)
(S11)

For the Jupiter structure functions this produces Supplementary Fig. 4. Equation (S11) is satisfied for 2500 km < r <
25 000 km, i.e. between the deformation scale and the jet scale. The flow becomes anisotropic for r > 25 000 km, as
expected.

At scales smaller than LD the two curves diverge. However, at scales r < LD the separation vectors are primarily
along the N-S and E-W directions, plus some vector pairs near the 45◦ angle near r ≈ LD (Supplementary Fig. 6b).
This is because the velocity vectors, while irregular, are nevertheless arranged on a pseudo-regular grid in longitude
and latitude. Therefore the available data at small r, and hence the structure functions, do not sample the range of
angles available, instead being biased towards the E-W and N-S directions. We don’t have any information about other
angles, so using the relationship between the second order structure functions at these scales to make a statement about
isotropy is unreliable.

The 2D kinetic energy spectrum gives another estimate of how isotropic the flow is, as for isotropic flow the 2D
spectrum should be independent of the zonal wavenumberm. This approach avoids the sampling problem the structure
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functions have. The 2D kinetic energy spectra for datasets G14g and C11 are shown in Supplementary Fig. 13. These
suggest the flow is reasonably isotropic at small scales, so we can conclude on this basis that the assumption of isotropy
is reasonably well satisfied for the scales of interest.
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Supplementary Figure 4: Isotropy relation between the 2nd order structure functions. 2nd order trans-
verse structure function (red) and derivative of the 2nd order longitudinal structure function (blue), using
dataset G14s. The thick lines show the means and the thin lines their 95% confidence intervals. Light grey
shading shows the jet scale and the typical deformation radius LD between latitudes 20-40◦.

3 Additional figures

Supplementary Figures 5-13 show

• 5: Zonal-time mean velocity and eddy velocity variability profiles for each dataset.

• 6: Number statistics for structure function vector pairs.

• 7: Estimated spread in the spectral fluxes and eddy-zonal conversion.

• 8: Estimated spread in the eddy kinetic energy spectra.

• 9: Zonal kinetic energy spectrum and estimated spread.

• 10: Enstrophy spectrum and estimated spread.

• 11: Compensated eddy kinetic energy spectra.

• 12: 2D kinetic energy and enstrophy spectra.

• 13: 3rd order structure functions for separations along E-W and N-S directions.
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Supplementary Figure 5: Zonal-time mean velocity and eddy velocity variability profiles for each
dataset. Variability is the standard deviation along each latitude circle. G14g is black (first three mosaics
only used for time means), C11 is red, and G14s is blue. The dashed line in a is from Porco et al. [9, Fig. 1].
Note that in b and d the mosaiced dataset G14g (black) has noticeably lower variability than the sparse
dataset G14s (blue).

(a) Zonal-time mean zonal velocity
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(b) Zonal velocity variability
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(c) Zonal-time mean meridional velocity
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(d) Meridional velocity variability
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Supplementary Figure 6: Number statistics for structure function vector pairs. a, Distribution of the
number of velocity vector pairs as a function of separation in dataset G14s. Each bin is 600 km wide and
the number of points in each bin is indicated on the right. b, Distribution of the angle the vector separating
each pair of velocity vectors makes with due North, as a function of separation (darker→more vector pairs).
The distribution is skewed at large separation as vector pairs are taken between the corners of the image
pair, and is skewed at small separation due to the quasi-regular gridded layout of the velocity vectors. The
bearings are restricted to 0−90◦ as the distinction between the start and end of each vector is arbitrary, and
the system (NB: not the flow itself) is symmetric about the equator (so bearings 70◦ and 110◦ are equivalent,
for example).

(a) Distribution of vector pair separations
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(b) Distribution of bearings for each separation
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Supplementary Figure 7: 3rd order structure functions for separations along the East-West and North-
South directions. Black lines show structure functions averaged over all angles, as in Fig. 2a of the main
manuscript. Red lines show structure functions for separations in the East-West direction only (where the
separation vector falls within 0.5◦ of the East-West line), and blue lines show separations in the North-
South direction only (equivalent 0.5◦ condition). Dots show negative values. Shaded areas are the same as
Supplementary Fig. 4.

(a) 3rd order longitudinal structure function
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(b) 3rd order transverse structure function
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Supplementary Figure 8: Estimated spread in the spectral fluxes and eddy-zonal conversion. The
coloured lines are the kinetic energy and enstrophy fluxes shown in Figs 3(c-f) of the main manuscript.
Here each of those lines is shown separately, with an estimate of the spread of values over the dataset
(either over the three days, in the case of G14g and C11, or over the individual image pairs, in the case of
G14s). The spread at each wavelength (dark grey shaded area) is the standard deviation of the individual
instances at that wavelength. The G14s plots are scaled in the same way as in the main manuscript.
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    (b) KE spectral flux (total): C11
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    (c) KE spectral flux (total): G14s * (2π)
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(d) KE spectral flux (eddy-eddy): G14g
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    (f) KE spectral flux (eddy-eddy): G14s * (2π)
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(g) KE conversion (eddy->zonal mean): G14g
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    (h) KE conversion (eddy->zonal mean): C11

106 105 104 103

Wavelength (km)

-2

-1

0

1

2

C
E

,e
z

n 
   
 (

10
-5
 W

 k
g-1

)

nJet

LD

    

    (i) KE conversion (eddy->zonal mean): G14s * (2π)
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(j) Enstrophy spectral flux (total): G14g
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    (k) Enstrophy spectral flux (total): C11
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    (l) Enstrophy spectral flux (total): G14s * (2π)3
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Supplementary Figure 9: Estimated spread in the eddy kinetic energy spectra. These show the spread
of values for the lines in Figs 3(a-b) of the main manuscript. Lines and shading are the same as in Supple-
mentary Fig. 8.
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(d) Eddy KE spectrum (rotational): G14g
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    (f) Eddy KE spectrum (rotational): G14s
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Supplementary Figure 10: Zonal kinetic energy spectrum and estimated spread. Lines and shading are
the same as in Supplementary Fig. 8.

(a) Zonal KE spectrum (full): G14g
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    (b) Zonal KE spectrum (full): C11
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    (c) Zonal KE spectrum (full): G14s
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(d) Zonal KE spectrum (rotational): G14g
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    (e) Zonal KE spectrum (rotational): C11
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    (f) Zonal KE spectrum (rotational): G14s
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Supplementary Figure 11: Enstrophy spectrum and estimated spread. Lines and shading are the same
as in Supplementary Fig. 8.

(a) Total enstrophy spectrum: G14g

106 105 104 103

Wavelength (km)

10-14

10-13

10-12

10-11

10-10

ζ n
 (

s-2
)

nJet

LD

    

    (b) Total enstrophy spectrum: C11

106 105 104 103

Wavelength (km)

10-14

10-13

10-12

10-11

10-10

ζ n
 (

s-2
)

nJet

LD

    

    (c) Total enstrophy spectrum: G14s

106 105 104 103

Wavelength (km)

10-14

10-13

10-12

10-11

10-10

ζ n
 (

s-2
)

nJet

LD

    

    

Supplementary Figure 12: Compensated eddy kinetic energy spectra. a and b are compensated by the
fit lines plotted in Figs 3(a-b) in the main text, respectively. c and d are compensated by the wavenumber
power that fits the spectrum at and just smaller than the jet scale. Lines and shaded regions are the same
as Fig. 3 in the main text.

(a) EKE total spectrum, compensated by n5/3
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(b) EKE rotational spectrum, compensated by n2
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(c) EKE total spectrum, compensated by n1/2
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(d) EKE rotational spectrum, compensated by n4/5
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Supplementary Figure 13: 2D kinetic energy and enstrophy spectra. Colours are shown on a log scale.
Horizontal dashed lines bracket the range of deformation scales shown as grey bands in other figures, and
horizontal dotted lines bracket the range of jet scales.
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