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Jupiter’s turbulent weather layer contains phenomena of many different sizes, from local storms up to the Great
Red Spot and banded jets. The global circulation is driven by complex interactions with (as yet uncertain) small
scale processes. We have calculated structure functions and kinetic energy spectral fluxes from Cassini obser-
vations over a wide range of length scales in Jupiter’s atmosphere. We found evidence for an inverse cascade of
kinetic energy from length scales comparable with the first baroclinic Rossby deformation radius to the global
jet scale, but also a forward cascade of kinetic energy from the deformation radius to smaller scales. The lat-
ter disagrees with the traditional picture of Jupiter’s atmospheric dynamics, but has some similarities with
mesoscale phenomena in the Earth’s atmosphere and oceans. We conclude that the inverse cascade driving
Jupiter’s jets may have a dominant energy source at scales close to the deformation radius, such as baroclinic
instability.

With a typical Reynolds number of ∼1013 and Rossby number of ∼0.01, Jupiter’s atmosphere is one of the most
turbulent places in the Solar System1–3, and is an excellent natural example of quasi-2D, rotating, stratified turbulence.
Its turbulent weather layer is obvious from even the most cursory examination, with eddies over a wide range of length
scales from the 40 000 km diameter Great Red Spot down to the pixel scale in high resolution images (Fig. 1).

[Figure 1 about here]

A distinctive characteristic of a turbulent flow is the nonlinear transfer of energy, vorticity and other flow properties
between different scales of motion in processes known as cascades. In homogeneous, isotropic 3D turbulence, for
example, nonlinear exchanges tend to cascade kinetic energy from large to small scales, where it may be removed
by viscous dissipation, leading to the well known Kolmogorov − 5

3 law for the kinetic energy spectrum in the inertial
range at intermediate scales4. In contrast, in a two-dimensional or quasi-geostrophic system forced at a given scale Lf ,
the “classical” picture5–8 suggests that energy will generally cascade towards scales ≥ Lf while enstrophy (squared
relative vorticity) cascades to scales≤ Lf , exhibiting self-similar energy spectra with slopes of− 5

3 and -3 respectively.
In a rapidly rotating, stably stratified planetary atmosphere, such as on Earth or Jupiter, the situation is likely to be

more complicated, but it is now well established9 that the Earth’s upper troposphere exhibits a steep spectrum at syn-
optic scales (∼1000–5000 km) with a slope close to -3. This may suggest a classical downscale enstrophy-dominated
cascade, although spectral flux determinations10–12 indicate that energy is mostly transferred upscale. At smaller
scales, however, the energy spectrum becomes significantly shallower, with a slope approaching the Kolmogorov-like
value of − 5

3 , the interpretation of which remains controversial13–18. The − 5
3 slope is consistent with both the inverse

energy cascade of classical 2D turbulence14 and a spectrum of internal gravity waves with a forward energy cascade
to small scales13, and so its interpretation depends crucially on measuring the direction and magnitude of the cascades
of energy and enstrophy over this range of scales.

In determining this, several authors19–22 have used methods based on the structure function which entails comput-
ing various two-point covariances of velocity as a function of separation. These appear to show a downscale energy
transfer over the range of scales where the − 5

3 spectrum is found, although the debate continues as to which mech-
anism may be responsible. A similar reversal in the direction of the kinetic energy cascade is also evident in the
oceans23,24 around the scale of the first baroclinic deformation radius, likely consistent with an injection of kinetic
energy associated with baroclinic instability.

On Jupiter, although several authors25–28 have made determinations of the sense and magnitude of the conversion
rate of kinetic energy from eddies into zonal jets from cloud wind measurements, the cascade of kinetic energy as-
sociated with eddy-eddy interactions has remained largely unexplored in observations until the present work. Here
we measure the direction of Jupiter’s kinetic energy cascade throughout the range of observed length scales using
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both structure functions19,20 and spectral fluxes10,11,29 as complementary approaches. The prevailing view3 would
anticipate that, given the strong dominance of planetary rotation on large-scale motions on Jupiter, energy is likely
to be mostly transferred upscale from the relatively small scales (dominated by convection or baroclinic instabilities)
towards the scales of the zonal bands30,31. Of particular interest in this context is the trend towards a − 5

3 spectrum at
the smallest resolvable scales in kinetic energy derived from cloud motions27, which suggests an energy-dominated
inertial range but with an uncertain direction of the associated energy cascade.

Jupiter wind maps derived from Cassini flyby observations

NASA’s Cassini spacecraft flew by Jupiter in December 2000, and took a large number of images in the visible and
near-infrared (IR) bands using the Imaging Science Subsystem (ISS) instrument32 (Fig. 1). A short subset of the
images before closest approach have been pre-processed, projected onto a longitude-latitude grid, and made available
for public use33. We use horizontal winds calculated by two independent cloud tracking analyses of the CB2 near-IR
continuum band images27,28. Datasets G14g27 and C1128 contain global zonal (u) and meridional (v) wind velocity
fields on latitude-longitude grids, covering three rotation periods of the planet over 360◦ longitude and ±50◦ latitude.
We also use a third dataset, G14s, which contains local wind vector fields covering almost four rotation periods, each
one including the raw velocity vectors from one of the 70 image pairs (approximately a square of side 60–70◦) that
were subsequently stitched together to construct the G14g dataset.

2nd and 3rd order turbulent structure functions

Using dataset G14s we calculated the 2nd and 3rd order structure functions for flow in Jupiter’s weather layer. The
3rd order structure function identifies the direction of kinetic energy propagation between different length scales,
and quantifies the rate at which energy moves through a turbulent cascade. It is calculated from the cube of the
velocity difference projected along a line separating two points, δuL, as a function of the separation distance r between
those two points, averaged over all possible pairs of points. For 3D homogeneous isotropic turbulence the 3rd order
longitudinal structure function, suitably averaged over time and space, is negative and in the Kolmogorov inertial range
varies linearly as 〈δu3L〉 = − 4

5εr, where ε is the energy injection rate at large scales34. In the energy inertial range
of a 2D turbulent flow, however, a homogeneous isotropic flow is expected to exhibit positive 3rd order longitudinal
and transverse structure functions 〈δu3L〉 = +3

2Pr and 〈δuLδu2T 〉 = + 1
2Pr, where P is the energy input power due

to a small-scale driving force19, and δuT is the velocity difference projected perpendicular to the separation vector.
Hence the 3rd order structure function can reveal both the direction and, to some extent, the magnitude of the turbulent
energy flux in Jupiter’s weather layer.

[Figure 2 about here]

Figure 2a shows the 3rd order structure functions for flow in Jupiter’s weather layer, as a function of separa-
tion distance, averaging over all separation directions. There is a well-defined linear and positive dependence of the
structure functions on r between separations of 3500–40 000 km. The positive structure functions show there is an
upscale energy flux over these scales, from small to large scales, and the linear trend in r indicates there may be a
self-similar inverse energy cascade akin to the − 5

3 cascade of classical 2D turbulence in its inertial range. We fit-
ted 〈δu3L〉 = + 3

2Pr and 〈δuLδu2T 〉 = + 1
2Pr to the data between 0 ≤ r ≤ 50 000 km and found the energy input

power to be P ≈ 1× 10−4 W kg−1. Only a rough estimate of the magnitude of the input power is justified using this
method, however. The fits assume homogeneous isotropic turbulence, and at large scales at least Jupiter’s atmosphere
is anisotropic. While the structure functions are qualitatively the same independent of direction, we find P varies by
up to a factor of five when comparing separations in the East-West and North-South directions, which points to flow
anisotropy in physical space (Supplementary Fig. 7). Therefore we quote P to its leading digit only. This estimate
is somewhat larger than our earlier estimate of ε = (0.5 − 1.0) × 10−5 W kg−1, measured directly from the kinetic
energy spectrum27, but this is possibly because that work used a mosaicing procedure that damps the eddy velocities
(Supplementary Fig. 5), and also the Kolmogorov constant used in the fit to find ε in that work is not well known on
the sphere. Our figure does agree well with eddy-zonal kinetic energy conversion rates of (0.7− 3.0)× 10−4 W kg−1

calculated from eddy momentum flux analyses25,26.
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It is the behaviour at small scales r < 3500 km that is particularly intriguing, however. Here the 3rd order
longitudinal structure function is negative, implying downscale energy transfer from large to small scales, in contrast to
the traditional picture of Jupiter’s atmospheric turbulence. It clearly does not vary as −r as in standard 3D turbulence,
but energy flux diverging both upscale and downscale from a small range of length scales implies these length scales
contain a significant kinetic energy source for the flow. The only relevant length scale close to this scale is the first
baroclinic Rossby deformation radius, LD, which is the horizontal scale where the effects of rotation and stratification
are comparable, and is also the size of typical baroclinic eddies. For typical midlatitudes φ = 20−40◦ the deformation
radius likely ranges from 1500–3500 km (See Supplementary Information, and Fig. 1).

Figure 2b shows the 2nd order structure functions. At small scales< LD these approach the classical r2/3 form for
a 2D turbulent flow with− 5

3 energy spectrum. However, betweenLD andLjet the structure function is close to flat, not
r2/3 as expected in the energy-dominated inertial range of 2D turbulence19. The eddy kinetic energy spectrum, which
is shown in Fig. 3a, is reasonably well approximated by a flat spectrum at low wavenumbers and a n−5/3 spectrum
at high wavenumbers, with a transition around n ∼ 80. Such a spectrum results in a 2nd order structure function
that is flat at large r, transitions around the break in the spectrum from flat towards r2/3, and only approaches r2/3

asymptotically at small r. In this case a good r2/3 fit is only expected for r . 1000 km. This relationship is derived
in the Supplementary Information (Supplementary Figs 1–4 and Supplementary Table 1). Our measured 2nd order
structure functions are qualitatively consistent with this picture and hence, despite their deviation from the classical
r2/3, are consistent with our other results. The large-scale spectrum influences the small-scale structure function
because it incorporates the energy contained in eddies of size r or less, plus r2 times the enstrophy in eddies of size r
or greater35.

Spectral fluxes of kinetic energy and enstrophy

To corroborate our finding of downscale energy transfer at small scales in Jupiter’s atmosphere, we computed the
spectral fluxes of kinetic energy and enstrophy between different length scales directly. Using datasets G14g and C11
we calculated spectral fluxes on the sphere using a well-established method used for Earth10,11. Using dataset G14s we
computed an independent estimate of the spectral fluxes by calculating nonlinear triad interactions29, after projecting
the velocity field for each image pair onto a plane. Because of the approximations required to project from the sphere
to the plane, this third measurement should be considered a check on the first two measurements on the sphere (as it
happens, the spectral fluxes agree well).

In all three cases we used the rotational (non-divergent) part of the horizontal velocity field only, when calculating
the fluxes. Using a method that included the divergent terms12, we found that the divergent parts of the G14g and C11
energy spectra differed significantly, while the rotational parts agreed well. We expect the error in the divergent part of
the flow to be somewhat larger than the rotational part, therefore, and have omitted it in this analysis, but may examine
it more closely in the future.

[Figure 3 about here]

Figure 3 shows the kinetic energy and enstrophy spectra and spectral fluxes. When the full velocity is considered,
including the divergent component, the eddy kinetic energy spectrum (Fig. 3a) scales as the classical n−5/3 for n & 80
(note that the structure functions above used the full velocities). In the rotational component of the flow, the eddy part
of the energy spectrum (Fig. 3b) appears to scale as n−2 for n & 80. We note that a n−2 spectrum of rotational
kinetic energy has also been reproduced in Earth atmosphere models in the upper troposphere36. The zonal part
of the spectrum (Supplementary Fig. 10) gives us a heuristic estimate of the global jet scale, which is shown as a
light grey band and corresponds to the peaks in the zonal energy spectrum of the three datasets near the jet scale:
nJet = 23− 28. This corresponds to a typical latitudinal jet width of 8000–9500 km, as one wavelength is equivalent
to two jets (Fig. 1).

Figure 3c shows the kinetic energy spectral flux calculated from the three datasets. There is good agreement
between all three, particularly at small scales. Positive spectral flux corresponds to energy transfer from large to small
scales, and the general trends are clear. First, the kinetic energy flux is negative and approximately flat (within a factor
of two) between 4000–15 000 km length scales, suggesting there is an inertial range with an inverse cascade of kinetic
energy with power ΠE,tot

up ≈ (−5±2)×10−5 W kg−1 from small scales up to the jet scale. The position and magnitude
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of the inverse cascade agree broadly with the 3rd order structure function (Fig. 2a). Second, at small scales≤ 2000 km
the positive spectral flux corroborates our earlier finding of downscale energy transfer at small scales in the 3rd order
structure function. There is a remarkable agreement between the three datasets on the length scale at which the switch
from an upscale to a downscale flux occurs, and the agreement between this scale and a typical deformation radius in
midlatitudes is striking. We cannot estimate the downscale flux reliably from our structure functions, but we can make
a tentative estimate from the spectral fluxes. There is a small range of scales where the spectral flux is approximately
flat, indicating an inertial range containing a forward energy cascade with power ΠE,tot

down ≈ (1.5±0.3)×10−5 W kg−1.
Third, Fig. 3d shows the kinetic energy spectral flux due to eddy-eddy interactions only. This has the same general
form as the total energy flux, with inverse cascade power ΠE,ee

up ≈ (−0.8 ± 0.6) × 10−5 W kg−1. So while most
of the flux is due to zonal-eddy interactions, a not insubstantial part is due to eddy-eddy interactions. Finally, there
is a convergence of kinetic energy at the jet scale. This comes both from larger scales (up to around 40 000 km)
down to the jet scale and from smaller scales (down to around 2500 km) up to the jet scale. We are not aware of any
modelling work that reproduces such a downscale energy flux at large scales, although we do note there is also a weak
convergence of kinetic energy at large scales in both the Earth’s atmosphere10 and oceans23. All three datasets show
that the primary eddy to zonal flow energy conversion occurs at or near the jet scale (Fig. 3e).

The spectral enstrophy flux in Fig. 3f is overwhelmingly downscale, increasing strongly with wavenumber up to the
resolution limit of the measurements. This is broadly consistent with expectations for quasi-geostrophic turbulence7,8

and similar to what has been found for the Earth’s atmosphere10,11 but with no evidence for an enstrophy-cascading
inertial range. Rather, there appears to be continuous generation of enstrophy at all scales smaller than the jet scale,
suggestive of frontogenetic processes and filamentation of vorticity.

Implications for turbulence in Jupiter’s atmosphere

The overall picture that emerges from our analysis is of a turbulent upper troposphere on Jupiter in which kinetic
energy is generated on a scale comparable with the internal Rossby radius of deformation and cascades to both larger
and smaller scales. At the same time, enstrophy is cascaded uniformly downscale but also generated over a wide range
of scales down to the resolution limit of the observations.

Although the kinetic energy spectrum ends up looking superficially rather like what is seen in the Earth’s upper
troposphere, with a shallow n−5/3 spectrum at small scales associated with a downscale energy cascade, the reversal
of the energy cascade at a scale comparable with the Rossby radius is quite different and may suggest a rather different
dynamical mechanism at work, perhaps more like the oceans23,24. In the Earth’s atmosphere, mechanisms most
frequently discussed for the reversal of the energy cascade are either forced gravity wave turbulence13 or other forms of
stably stratified vortical turbulence17. Aspects of the small scale behaviour resemble turbulence in Earth’s atmosphere
and oceans, but the flattening of the spectrum at large scales is distinctly non-terrestrial. Part of the upscale cascade
covers this flatter region. We are not aware of any theory that explains such a cascade within a flat energy spectrum,
and hence Jupiter’s turbulence may not represent a “classical” inertial range. We hope this result will prompt others to
think further about the underlying mechanisms.

On Jupiter, the Rossby deformation radius is rather too large to be consistent with an energy injection due to
(dry or moist) convection, even though this may be energetically significant (at least locally) for the atmosphere as
a whole37,38, but more likely suggests a role for baroclinic instability. In the absence of a solid surface, however,
such an instability will be somewhat different in character from its form in the Earth’s atmosphere and may be more
concentrated near the tropopause on Jupiter, where the static stability changes rapidly with height. This effectively
forms a quasi-boundary where potential vorticity gradients may become large. Under these conditions, the flow near
the tops of the clouds may be tracing something closer to a surface quasi-geostrophic (SQG) circulation16,39–41, for
which a reversal of the energy cascade is predicted to occur around the first baroclinic deformation radius, as found
here for Jupiter.

This is not the only possibility, however, and a lot depends on what the energy cascade may be doing at deeper
levels in Jupiter’s troposphere. But if SQG dynamics underly the turbulence observed near Jupiter’s cloud tops then
there may be a strong signature in the temperature field near the tropopause40, and perhaps a n−3 signal in the kinetic
energy spectrum at deeper levels41. These may be observable in principle via remote sensing from orbit, but will
require much higher spatial resolution thermal measurements of Jupiter’s tropopause and lower stratosphere (better
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than 1◦ in latitude and longitude) than have been available to date. Nevertheless, the existing measurements presented
here provide important new constraints against which to compare dynamical models of Jupiter’s troposphere.

Methods

Retrieval of wind velocities. Different cloud tracking algorithms based on Correlation Imaging Velocimetry
(CIV) were used to retrieve wind vectors in each dataset. CIV compares patches of pixel brightnesses between images
taken some time apart. The displacement and distortion of a pixel patch between the first and second images that
maximises the 2D correlation coefficient gives an estimate of the fluid’s displacement and hence its velocity42,43. The
different datasets used different assumptions and additional steps, and the reader is referred to the relevant publications
for details27,28.

Dataset G14 is available in two forms. G14g contains four global (360◦ longitude, ±50◦ latitude) horizontal
velocity mosaics on a 0.5◦ grid, one for each Jupiter rotation during the flyby, although we only use the first three for
the spectral fluxes as there is a large longitudinal gap in the fourth mosaic. G14g is already publicly available27. G14s
omits the final step of the cloud tracking procedure, which combined velocity vectors from individual image pairs onto
a regular, global, grid. Instead, G14s retains the irregularly-spaced individual velocity vectors produced by the CIV
procedure (1 123 505 in total), in 70 blocks corresponding to the images they were calculated from, each with typically
16 000 vectors. The typical error in each velocity component is about 7.4 cosφc m s−1 in zonal velocity u, where φc
is the planetocentric latitude, and about 7.4 m s−1 in meridional velocity v. Dataset G14s is available for download
from ORA-Data44.

We also considered a third dataset S0626, but this was not eventually used. Its correlation box is 3◦×3◦ so its true
resolution is relatively low. It contains many large gaps as wind vectors with meridional displacement greater than
four pixels are filtered out, which excludes many large vortices including most of the Great Red Spot. Finally, the time
separation between images is one rotation period (about 10 h) rather than an hour, which we found previously27 to be
too long to obtain good CIV matches.

Structure functions. For this calculation we used dataset G14s only. The structure function calculation cannot
use our global mosaics as these combine velocities measured at different times, and hence there would be systematic
errors associated with the evolution of the flow between images (up to one rotation period, around 10 h). Furthermore,
there are systematic errors introduced in the mosaicing process by stitching together velocity fields valid at different
times, particularly in the overlap regions. Therefore we did not compute structure functions from the G14g or C11
datasets. Structure functions calculated from dataset G14s use pairs of vectors from within the same image pair only,
as these vectors are strictly valid at the same time and hence systematic errors associated with the evolution of the flow
between images are avoided.

Structure functions were calculated following a method developed for Earth20. First we subtracted the time-zonal
mean zonal 〈u〉 and meridional 〈v〉 velocities from each velocity vector, using this mean over the entire dataset in
latitude bands of 0.5◦ (Supplementary Fig. 5). The time-zonal mean is the appropriate mean to subtract as the flow
is assumed to be statistically steady, and the system is symmetrical about the planet’s rotation axis. From the list of
velocity vectors for a single image pair we selected a velocity vector and measured the great circle distance r to each
of the other vectors in that image, along with the forward and back bearings45. For two velocity vectors u1 = (u1, v1)
at x1 = (x1, y1) and u2 = (u2, v2) at x2 = (x2, y2), the longitudinal and transverse velocity differences are then

δuL = (u2 − u1) · n̂ δuT = (u2 − u1) · t̂ (1)

where n̂ = r/|r| from x1 to x2, r = x2 − x1. n̂ points along the forward bearing at each end (note that on the sphere
n̂ will be different at the two ends). t̂ = n̂× ẑ in the northern hemisphere and t̂ = ẑ× n̂ in the southern hemisphere
both point perpendicular to r, with ẑ the unit vector pointing away from the centre of the planet. Where r crossed the
equator, its midpoint determined which t̂ to use.

δuL and δuT were calculated for every vector pair in every image, 9.1× 109 vector pairs in total (Supplementary
Fig. 6). We then split the data into bins of width 600 km in r, chosen as a round number close to the typical separation
between adjacent velocity vectors — about 0.5◦ or 610 km along a great circle of radius a. Smaller bins produced
aliasing between adjacent bins, particularly at low r, and larger bins began to smooth out detail in the structure function
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at small r. Within each bin the mean δu2L, δu2T , δu3L, and δuLδu2T gave the 2nd and 3rd order structure functions.
Averages were over all vector directions (we show structure functions for the East-West and North-South directions
separately as Supplementary Fig. 7).

The best fits to the third order structure functions were found using a linear least squares fit. Confidence inter-
vals in the fitting parameters and the structure functions were estimated using bootstrapping. The structure function
was calculated using a combination of the vector pairs in each bin sampled randomly, with replacement, repeated
10 000 times to calculate 2.5–97.5% confidence intervals. The measured confidence intervals are around 4% (Fig. 2),
but uncertainty due to the assumption of homogeneous isotropic turbulence in the fitting functions are likely to be
significantly larger.

The results are presented on the sphere for better comparison with the spectral fluxes, but the same calculations
done on (1) an oblate spheroid (Re = 71 492 km, Rp = 66 854 km46), (2) assuming a locally flat surface for each
image pair, and (3) taking a direct line between the start and end points through the planet and assuming no vertical
velocity, all gave similar results. An image width of 60◦ on the sphere doesn’t depart much from a locally flat surface;
the arc and chord lengths for r < 30 000 km differ by less than 1%.

Spectral fluxes — global. Our spectral fluxes on the full sphere were calculated using a well-established tech-
nique used for Earth10,11, using the Spherepack 3.0 library47 to compute the spectral transforms and operations. This
was done for datasets G14g and C11.

The spectral fluxes use the rotational (i.e. non-divergent) part of the flow v from a Helmholtz decomposition. This
is the component v = ẑ · (∇×Ψ) of the horizontal velocity field u = v + w, for which ∇ · v = 0, where Ψ is the
streamfunction. Similarly, the divergent (irrotational) component is w = ∇φ, for which ∇ ×w = 0, where φ is the
velocity potential. At large scales 1-10% of the kinetic energy is in the divergent component in both datasets. At small
scales, about 30–40% of the energy in C11 is in the divergent part, and 50–60% for G14g.

v was calculated first by performing a vector spherical harmonic analysis (Spherepack vhaec) on the full horizontal
velocity field u to obtain the vorticity- and divergence-free velocity spectral coefficients bm,n = brm,n + i bim,n and
cm,n = crm,n+i cim,n respectively, wherem and n are the zonal and total wavenumbers. Retaining the vorticity terms
only the spectrum of the vorticity field48 is ωm,n = cm,n

√
n(n+ 1)/a. Similarly, the spectrum of the divergence

field is δm,n = −bm,n

√
n(n+ 1)/a. The 1D kinetic energy spectrum is10

En =

n∑
m=−n

a2

4n(n+ 1)

[
ωm,nω

∗
m,n + δm,nδ

∗
m,n

]
(2)

where ∗ denotes the complex conjugate, which may be partitioned into rotational and divergent parts. Transform-
ing ωm,n back to real space (ivrtec) gives v. The enstrophy transfer function (net enstrophy transfer from other
wavenumbers into wavenumber n) is11

Jn = −1

4

n∑
m=−n

[
ω∗
m,n {v · ∇ω}m,n + ωm,n {v · ∇ω}∗m,n

]
(3)

where ∇ is the horizontal gradient operator. Using a basic vector identity and ∇ · v = 0 we get v · ∇ω = ∇ · (ωv).
We multiplied v through by the vorticity field, computed its vector spherical harmonic analysis, and then calculated
the spectrum of ∇ · (ωv) by multiplying the divergent part of the ωv spectrum by −

√
n(n+ 1)/a, from which we

obtained Jn. The energy transfer function is then

In =
a2

n(n+ 1)
Jn (4)

and the enstrophy and energy fluxes are

Hn+1 = −
n∑

l=1

Jl Fn+1 = −
n∑

l=1

Il (5)
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respectively.
To preprocess the G14g dataset for this calculation, first we filled in missing data by substitution as done pre-

viously27. The G14g grid and the grid Spherepack requires are offset by half a grid spacing in latitude, so the flux
calculation was done twice, once using the points on the northern edge of the grid box, and once using the points on
the southern edge. The difference was minimal. An interpolation across the grid box was not done as this artificially
damped out flow features at the smallest scales.

For the C11 dataset, first we filled in undefined latitudes with zeroes. Points within 1.5◦ of the equator were
removed due to the data processing method in the original analysis28, and velocities were linearly interpolated across
the gap. The C11 velocity fields are on a 0.05◦ grid (the pixel size in the original CB2 images), which over-samples
the true resolution of the velocity field by about a factor of 10, as the correlation box used in the C11 CIV procedure
was 10 pixels or 0.5◦ wide28. Therefore we subsampled the C11 data onto a 0.5◦ grid, by selecting every 10th point
in longitude, and linearly interpolating to the required latitudes. The smoothing problem for G14g was not important
as the interpolation was between two points separated by 0.05◦ rather than 0.5◦. This gave ten semi-independent
realisations of the subsampled velocity field, each one offset in longitude, so the C11 dataset effectively had 30 global
velocity fields.

The spectral flux was calculated for each day and realisation separately, and then averaged at each wavenumber to
find the mean flux and an estimate of the spread (shown in Supplementary Fig. 8).

Spectral fluxes — single images. Spectral fluxes from individual image pairs were estimated for dataset G14s
using nonlinear triad interactions29. This provides an independent measurement of the spectral fluxes and allows us to
estimate these fluxes without the systematic errors introduced by combining velocity fields into a global mosaic.

This method assumes Cartesian geometry so first we projected the positions of all the velocity vectors in a single
image pair onto a locally flat plane centred around the latitude φ and longitude λ of the centre of the image: (xi, yi) =
a((λi − λ) cosφi, φi − φ). Then we found the largest square that fit within the velocity field without leaving any gaps
at the corners. The velocity field was interpolated onto a N × N grid with spacing ∆x = 2πa (∆λ/360) bounded
by this square, using a smooth quintic polynomial interpolation to preserve as much of the small-scale information
as possible. As for the global case, we used a ∆λ = 0.5◦ grid spacing, which gives ∆x = 610 km and typically
N ≈ 100.

We transformed the velocity components unx,ny and vnx,ny [nx, ny = 0, . . . , N−1] in real space to Fourier space.
The spectral coefficients of the velocity components in terms of the 2D wavenumber k = (kx, ky) are

unx,ny
=

N−1∑
ky=0

N−1∑
kx=0

ũkx,ky
exp

[
i
2π

N

(
kxnx + kyny

)]
(6)

and similarly for vnx,ny , from which it follows36 that the 2D spectral coefficients of vorticity, the rotational part of
kinetic energy, and enstrophy29 are

ω̃kx,ky = ikxṽkx,ky − ikyũkx,ky Ẽkx,ky =
ω̃kx,ky

ω̃∗
kx,ky

2k2
ζ̃kx,ky =

ω̃kx,ky
ω̃∗
kx,ky

2
(7)

where k =
√
k2x + k2y is the 1D wavenumber, k = 1 corresponding to wavelength N∆x. To obtain the 1D energy

spectrum at wavenumber k we then summed over all 2D energy coefficients Ẽkx,ky
where k− 1

2 <
√
k2x + k2y ≤ k+ 1

2 .

The spectral fluxes were calculated29 from the 2D vorticity spectrum ω̃kx,ky
, which is related to Ψ̃kx,ky

, the 2D
stream function spectrum, by ω̃kx,ky

= −k2Ψ̃kx,ky
. In terms of the streamfunction the energy and enstrophy transfer

functions between Fourier modes k, p = (px, py), and q = (qx, qy), are29

Tkpq = R(−bkpqΨ̃kΨ̃pΨ̃q) Skpq = k2Tkpq (8)

where bkpq is an interaction coefficient. Writing this in terms of vorticity and expanding bkpq we can write the transfer
function as

Tkpq =
1

2k2

(
1

p2
− 1

q2

)
(pxqy − qxpy) δ(k + p + q) ω̃k ω̃p ω̃q (9)
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where p2 = p ·p and q2 = q ·q, and the δ-function reflects the fact that only triad interactions satisfying k+p+q = 0
contribute to the transfer function. Note that only one q exists for each [k,p] pair, which reduces the transfer function
to Tkp. We then obtain an energy transfer function Tkp in terms of the 1D wavenumbers k and p by summing over all

triads satisfying k − 1
2 <

√
k2x + k2y ≤ k + 1

2 and p − 1
2 <

√
p2x + p2y ≤ p + 1

2 . The enstrophy transfer function is

Skp = k2Tkp.
At wavenumber k the transfer function Tkp is positive for wavenumbers p that are giving energy to wavenumber

k, and negative for wavenumbers that are taking away from wavenumber k. The spectral flux through a wavenumber
k is obtained by summing over the 2D transfer function:

ΠE
k = +

k∑
k′=1

kmax∑
p=1

Tk′p (10)

and similarly for enstrophy ΠZ
k . To match the sign of this quantity to the equivalent quantity on the sphere (equation 5),

we reverse the sign of the original definition29. Flux from low to high wavenumbers (downscale) is positive, and flux
from high to low wavenumbers (upscale) is negative. Here kmax = N

2 − 1 (N even) is the maximum 1D wavenumber
that can be used to calculate triad interactions. Above this wavenumber we don’t have the whole of (kx, ky) space
available for a given 1D wavenumber. Typically < 1% of the energy is omitted from the calculation for this reason.

The spectra, transfer functions, and spectral fluxes were calculated for each of the image pairs. One of the image
pairs (n1355320923 / n1355324709) was excluded from the analysis as it contained large gaps due to the moon Io
passing in front of the planet. The mean and spread of fluxes over the 70 velocity fields was calculated (for spread, see
Supplementary Fig. 8). As each image was a slightly different size (and hence k = 1 corresponded to slightly different
distances in each case) averaging over the image pairs was done as a function of wavelength λ = N∆x/k and then
converted to an equivalent global wavenumber n = 2πa/λ.

Decomposition of the spectral fluxes. The spectral transfers (and fluxes) were decomposed into eddy-eddy
interactions, zonal-zonal interactions (identically zero), and eddy-zonal interactions.

Itotm,n = Ieem,n + Izzm,n + Izem,n (11)

The eddy-zonal interactions were further decomposed into an eddy-zonal conversion and a zonal-eddy conversion.

Itotm,n = Ieem,n + Cez
m,n + Cze

m,n (12)

This is based on an analogous decomposition into stationary and transient components49. Ieem,n was found by using
eddy velocities in equations 3 and 9. The eddy-zonal energy conversion Cez

m,n was calculated using eddy velocities for
the terms in {· · · } in equation 3, and zonal velocities for the terms outside the brackets. In equation 9 the k term used
its zonal component and the p and q terms their eddy components.

Code availability. The structure function and spectral flux code is available on request from R.M.B.Y. The Correla-
tion Imaging Velocimetry software UVMAT/CIV used to create datasets G14g and G14s is maintained by Laboratoire
LEGI, Grenoble.

Data availability. Raw images33 are available from the NASA Planetary Data System Planetary Atmospheres Node
(http://pds-atmospheres.nmsu.edu/). Dataset G14s44 can be obtained from the Oxford University Research Archive
— Data (https://ora.ox.ac.uk/). All other data supporting the findings of this study are available from the authors upon
reasonable request.
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Figure 1: Sample image of Jupiter’s clouds with jet scale and deformation radius. This is part of a
global mosaic of NASA Cassini ISS narrow-angle camera images combining the CB2 (750 nm) and BL1
(451 nm) filters. It shows a 45×30◦ region of Jupiter’s clouds centred at 130 ◦W, 25 ◦N. The approximate
jet scale Ljet (corresponding to global wavenumber n = 25) and the estimated deformation radius LD at
25 ◦N are shown. The zonal mean zonal velocity profile from dataset G14s is shown on the left; error bars
(standard error in the mean at each latitude) are thinner than the line. Image credits: NASA/JPL/Space
Science Institute/PIA07782.
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Figure 2: Turbulent structure functions in Jupiter’s weather layer. a, 3rd order longitudinal (blue),
transverse (red), and total (black) structure functions. Dashed grey lines are best linear fits to each, and dots
are negative values. Thick lines show the mean for each function, and thin lines show the 95% confidence
interval (whiskers for negative values) calculated using combinations of the vector pairs in each bin sampled
randomly, with replacement, repeated 10 000 times. b, 2nd order longitudinal (blue), transverse (red), and
total (black) structure functions. Confidence intervals are calculated in the same way as in a. The functions
in both panels all use dataset G14s. Light grey shading shows the typical deformation radius LD between
latitudes 20-40◦, and the jet scale. Above separation distance r = 80 000 km and below r = 1500 km the
separation vectors do not sample each possible direction (see Supplementary Fig. 6). The upper axes show
the equivalent global wavenumber on the sphere 2πa/r for each separation distance, where a = 69 911 km
is Jupiter’s mean radius at 1 bar.
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Figure 3: Energy and enstrophy spectra and spectral fluxes in Jupiter’s weather layer. a, Eddy kinetic
energy spectrum. b, Rotational (non-divergent) part of the eddy kinetic energy spectrum. c, Kinetic energy
spectral flux computed from the non-divergent flow. d, As c, but for eddy-eddy interactions only. e, Eddy to
zonal kinetic energy conversion. f, Enstrophy spectral flux. The three datasets are black (G14g), red (C11),
and blue (G14s). Dataset G14s is scaled by various powers of 2π due to different definitions of the spectra
and fluxes in different geometries. The lower axes show the approximately equivalent wavelength for each
total wavenumber λ = 2πa/n. Light grey shading shows the jet scale and the typical deformation radius
between latitudes 20-40◦. See Supplementary Figs 8, 9, and 11 for error bars, Supplementary Fig. 12 for
compensated eddy kinetic energy spectra, and Supplementary Fig. 13 for 2D kinetic energy and enstrophy
spectra.
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