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The energetics of possible global atmospheric circulation patterns in an Earth-like

atmosphere are explored using a simplified global General Circulation Model

(GCM) based on the University of Hamburg’s Portable University Model for the

Atmosphere (designated here as PUMA-S), forced by linear relaxation towards a

prescribed temperature field and subject to Rayleigh surface drag and hyperdiffusive

dissipation. Results from a series of simulations, obtained by varying planetary rota-

tion rate Ω with an imposed equator-to-pole temperature difference, were analysed

to determine the structure and magnitude of the heat transport and other contri-

butions to the energy budget for the time-averaged, equilibrated flow. These show

clear trends with rotation rate, with the most intense Lorenz energy cycle for an

Earth-sized planet occurring with a rotation rate around half that of the present-day

Earth (i.e., Ω∗ = Ω∕ΩE = 1∕2, where ΩE is the rotation rate of the Earth). Kinetic

energy (KE) and available potential energy (APE) spectra, EK(n) and EA(n) (where

n is total spherical wavenumber), also show clear trends with rotation rate, with n−3

enstrophy-dominated spectra around Ω∗ = 1 and steeper (∼ n−5) slopes in the zonal

mean flow with little evidence for the n−5∕3 spectrum anticipated for an inverse KE

cascade. Instead, both KE and APE spectra become almost flat at scales larger than

the internal Rossby radius, Ld, and exhibit near-equipartition at high wavenumbers.

At Ω∗ << 1, the spectrum becomes dominated by KE with EK(n) ∼ (2–3)EA(n)
at most wavenumbers and a slope that tends towards n−5∕3 across most of the spec-

trum. Spectral flux calculations show that enstrophy and APE are almost always

cascaded downscale, regardless of rotation rate. KE cascades are more complicated,

however, with downscale transfers across almost all wavenumbers, dominated by

horizontally divergent modes, for Ω∗ ≲ 1∕4. At higher rotation rates, transfers of

KE become increasingly dominated by rotational (horizontally nondivergent) com-

ponents with strong upscale transfers (dominated by eddy–zonal flow interactions)

for scales larger than Ld and weaker downscale transfers for scales smaller than Ld.
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1 INTRODUCTION

Atmospheric circulation can be said to occur because of

the propensity of fluid motion to transfer heat energy from

regions of net heating to regions of net cooling. Horizon-

tal heat transfer is also part of the overall processing and

conversion of energy within the atmospheric “heat engine”,

in which local imbalances between incoming radiant energy

from the parent star and thermal emission tend to modulate

the internal energy and increase the potential energy of the

atmosphere. Dynamical processes then act to convert such

potential energy into various bulk forms of motion in the

form of kinetic energy before dissipative processes ultimately

reconvert this back to heat again. Precisely how potential

energy is transformed into kinetic energy depends strongly

on the dynamical constraints governing atmospheric motion,

and this in turn depends on a number of external factors,

such as planetary size, mass and rotation, the overall mass of

the atmosphere, and its composition. Heat, momentum, and

other tracers may be transported in latitude either by direct

meridional overturning in an axisymmetric Hadley-type cir-

culation or via nonaxisymmetric eddies through systematic

covariances between meridional velocity and temperature

fluctuations.

Heat transport, of course, represents only part of the over-

all cycle of energy conversion within a planetary atmosphere.

A common approach to the analysis of energy conversions is

the one based on the work of Lorenz (1955), in which energy

reservoirs and exchanges are partitioned between kinetic and

(available) potential energy, and between zonally averaged

and eddy components. Energy exchanges within the Earth’s

global circulation have been analysed in this way for many

years (Peixóto and Oort, 1974; Li et al., 2007; Boer and

Lambert, 2008), although very few studies have examined

the Lorenz energy cycle for other planets (for example, Lee

and Richardson, 2010; Pascale et al., 2013; Schubert and

Mitchell, 2014; Tabataba-Vakili et al., 2015). In the con-

text of an exploration of how the global circulation regime

changes within a simplified model atmosphere, it is of signif-

icant interest to examine how the cycle of energy conversions

changes throughout parameter space. This is investigated in

the present study for an Earth-like planet at various rota-

tion rates, based on the set of simulations presented by Wang

et al. (2018) using the Hamburg Portable University Model

for the Atmosphere (PUMA) model, and the results presented

in section 4.

The Lorenz approach provides insight into how the atmo-

spheric heat engine transfers energy from the planetary scale,

zonally symmetric flow into nonaxisymmetric “eddies”.

However, this is only a crude measure of how energy passes

from scales that are energized directly by solar heating and

radiative cooling into other scales of scales of motion, that

takes little account of the macroturbulent processes that dis-

tribute energy from the forcing scales towards those affected

by dissipation. In this context, the concept of geostrophic

turbulence, first introduced by Charney (1971), has been

an important paradigm for theories of large-scale planetary

atmospheric and oceanic circulations.

The flow in geostrophic turbulence tends to be highly

chaotic, quasi-2D (horizontal) and quasigeostrophic, typically

featuring an inverse energy cascade if small-scale forcing is

present. Planetary rotation, large aspect ratio (between hor-

izontal vertical scales), and statically stable stratification all

act to bring planetary atmospheric flows into quasihorizontal

(quasi-2D) motion. Small-scale forcing is usually envisaged

as being provided by either baroclinic instability occuring

at scales comparable to the Rossby deformation radius (LD)

or small-scale convection, as is possibly the case for Jovian

planets (see, for example, Ingersoll et al., 2000; Read et al.,
2007; 2015). The energy generated through such processes

then becomes a small-scale “agitator” of the inverse energy

cascade in the barotropic mode, though the precise mecha-

nism for energizing this mode is still not well understood.

It is a typical feature of two-dimensional (2D) isotropic (in

a 2D planar sense, or horizontally isotropic) turbulence that

energy goes from small to large scales through a spectrally

local inverse cascade. The direct consequence of such an

inverse energy cascade is the emergence of large circular

eddies with no preferred directionality. In the presence of a

non-negligible background vorticity gradient (for example,

𝛽-effect), however, it was shown by Rhines (1975) that such

large-scale eddies become anisotropic, causing an elongation

of structures in the zonal direction and ultimately leading to

the formation of zonal jets.

Sukoriansky et al. (2002) and Galperin et al. (2006)

recently proposed the paradigm of zonostrophic turbulence as

an attempt to characterize the regime of eddy-driven multiple

zonal jets on a 𝛽-plane universally. Under a strong 𝛽-effect,

it is proposed that flows can develop into the regime of

zonostrophic turbulence, which is characterized by a strongly

anisotropic kinetic energy (KE) spectrum with a steep (−5)

slope for the zonally symmetric flow component and a clas-

sic Kolmogorov–Batchelor–Kraichnan (KBK) −5∕3 slope in

the nonaxisymmetric eddy/residual modes. The segments of

the spectra in this regime take the universal form (when

appropriately nondimensionalized)

EZ(n) = CZ𝛽
2n−5, CZ ∼ 0.5, (1a)

ER(n) = CK𝜖
2∕3n−5∕3, CK ∼ 5, (1b)

where 𝜖 is the energy pumping rate of the small-scale exci-

tation. (In previous 2D numerical studies of zonostrophic

turbulence, this is represented as an artificial energy input at a

specific wavenumber n𝜉 : see, for example, Huang et al. (2001)

and Galperin et al. (2004). In a real planetary atmosphere,

this can be due to barotropic or baroclinic eddies, or, in the

case of gas giants, possibly small-scale moist convection as

well.) CK is the universal Kolmogorov–Kraichnan constant,

while barotropic simulations (for example, Chekhlov et al.,
1996; Huang et al., 2001) suggest that CZ can vary between

0.1 and 1.0.
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Precisely how these and other regimes emerge and under

what conditions has been largely unexplored in general until

recently, leaving open many questions as to the nature of the

circulation of various planets within and beyond our Solar

System. In the present work, therefore, we analyse a set of

numerical model simulations, obtained using a simplified

global General Circulation Model (GCM) in which atmo-

spheric flows in an Earth-like planetary atmosphere are driven

by simple linear relaxation towards a prescribed (steady)

zonally symmetric temperature field (on a time-scale 𝜏R)

and dissipated by a linear Rayleigh drag (with prescribed

time-scale 𝜏fr). We vary various planetary parameters (espe-

cially the planetary rotation rate, but also the surface friction

time-scale) and allow the simulation to equilibrate over a

time-scale of the order of 20 Earth years. The basic model and

the phenomenology of the circulation regimes were described

in a companion article (Wang et al., 2018), which clearly

demonstrated a systematic sequence as Ω was varied from

Ω∗ = 1∕16 to Ω∗ = 8. The regimes obtained ranged from

a super-rotating, barotropically unstable cyclostrophic atmo-

sphere at the lowest values of Ω∗ to a highly geostrophically

turbulent circulation with multiple zonal jets at Ω∗ >> 1, via

more Earth-like, geostrophic states with simpler patterns of

jets and baroclinic eddies that were either regular and periodic

or chaotic in nature.

In this article, however, we focus on analysing the budgets

of kinetic and potential energy and associated heat transport.

We begin with an analysis of the global exchanges of energy

within the well-known framework of the Lorenz energy cycle,

but then extend the analysis to consider the more detailed

exchange of energy and enstrophy between different scales

via the spectra of kinetic and available potential energy and

the principal spectral fluxes as a function of spherical har-

monic total wavenumber. The computation of spectral fluxes

provides arguably the most detailed and precise means of

evaluating the direction and intensity of turbulent cascades

by computing the exchanges of various forms of energy and

enstrophy between different scales directly, as represented in

a decomposition of flow structure projected on to a spectrum

of spherical harmonics. This approach has been applied for

several years to studies of kinetic energy exchanges within the

Earth’s atmospheric circulation in numerical simulations and

assimilated analyses (for example, Boer and Shepherd, 1983;

Shepherd, 1987; Koshyk and Hamilton, 2001; Burgess et al.,
2013), but relatively few such analyses have been extended

to include potential energy exchanges and conversions (Lam-

bert, 1984; Augier and Lindborg, 2013; Malardel and Wedi,

2016). They have proved able to provide important insights,

however, into how the atmosphere transfers key properties

between different scales through nonlinear interactions, and

in particular the potential impacts of various parametrization

schemes on the modelled cascades of energy and enstrophy

(Malardel and Wedi, 2016). A similar approach has recently

been applied to the Earth’s oceans, at least on a local scale in

the context of mesoscale eddies (Scott and Wang, 2005; Scott

FIGURE 1 Restoration temperature (colour) and potential temperature

(contour) field in units of K with equator-to-pole temperature difference of

60 K

and Arbic, 2007), and even to the kinetic energy budget of

Jupiter’s atmosphere (Young and Read, 2017), in which both

systems reveal the existence of a double cascade (involving

both up- and downscale segments), energized on scales close

to the Rossby deformation radius.

Section 3 presents the framework for analysis of the budgets

of kinetic and potential energy and spectral transfers of energy

and enstrophy. Results for the various terms in the Lorenz

energy budget as a function of planetary rotation rate are pre-

sented and discussed in section 4, while section 5 provides

an overview of trends in the spectra of kinetic and potential

energy. The spectral fluxes of energy and enstrophy as a func-

tion of Ω∗ are presented in section 6 and the overall results

are discussed in section 7.

2 MODEL SETUP AND EXPERIMENT
DESIGN

The model used is PUMA (for example, see Fraedrich et al.,
1998; Frisius et al., 1998; von Hardenberg et al., 2000),

consisting of a spectral dynamical core solving the dry

primitive equations on a sphere, based on the code devel-

oped by Hoskins and Simmons (1975). Temperature, diver-

gence, vorticity, and ln ps (where ps is the surface pres-

sure) are the prognostic variables. The model domain uses

finite-difference discretization in the vertical using 10 equally

spaced 𝜎 levels (where 𝜎 = p∕ps). The integration in time

was carried out with a filtered leap-frog semi-implicit scheme

(Robert, 1966).

Thermal forcing was applied via a linear Newtonian relax-

ation towards a prescribed (axisymmetric) temperature field

that was constant in time, with a relaxation time-scale 𝜏R. The

complete restoration temperature field (with equator-to-pole

temperature difference of 60 K) was intended to represent a

distribution similar to the Earth and is shown in Figure 1. The

radiative time-scale, 𝜏R, was set to 30 Earth days in the free

atmosphere, decreasing to 2.5 Earth days at 𝜎 = 1.0.

A smooth, spherical planet was assumed in each case,

with no surface topography. Dissipation consisted of a com-

bination of linear Rayleigh drag towards rest in the lowest
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two model levels (with a time-scale decreasing from zero to

𝜏F = 0.6 Earth day at the surface) and a 𝛻8 hyperdiffusion

acting separately on temperature, vorticity, and divergence.

Simulations were run from an isothermal state at rest at a

series of planetary rotation rates, from Ω∗ = Ω∕ΩE = 1∕16

to Ω∗ = 8, for a period equivalent to 10 Earth years. Horizon-

tal resolution was set to T42 for slowly rotating simulations

(Ω∗ ≤ 1), T127 for faster rotating simulations with Ω∗ = 1

and with T170 reserved for simulations with Ω∗ = 2, 4 and 8.

The computed diagnostics were averaged over the final model

year from each run. Further details on the model setup and

experiment design are presented by Wang et al. (2018).

3 ANALYSIS OF ENERGY BUDGETS

The kinetic energy, EK, and available potential energy (APE),

EA, of an atmosphere can be defined (for example, Augier and

Lindborg, 2013) in pressure coordinates by

EK(p) = |̂u|2∕2, (2)

EA(p) = 𝛾(p)𝜃′2∕2, (3)

where u is the horizontal component of the total velocity

v = (u, 𝜔), 𝜔 = Dp∕Dt is the vertical velocity in pressure

coordinates, 𝜃 is potential temperature, (̂.) denotes an average

over an entire pressure level, and (.)′ departures therefrom.

𝛾(p) is defined as

𝛾(p) = R∕[Λ(p)p𝜕p𝜃], (4)

where R is the gas constant, Λ(p) = (pR∕p)𝜅 , pR is a reference

pressure, and 𝜅 = R∕cp.

The energy budget of atmospheric KE and APE can be

derived from combining Equations 2 and 3 with equations

of motion and conservation of potential temperature (for

example, Augier and Lindborg, 2013) to obtain

𝜕tEK(p) = C(p) + 𝜕pFK↑(p) − DK(p) + S(p), (5)

𝜕tEA(p) = G(p) − C(p) + 𝜕pFA↑(p) − DA(p) + J(p). (6)

Here, G(p) is an APE generation term, for example, due

to differential heating, C(p) is the conversion from APE to

KE, FK↑(p) and FA↑(p) are vertical fluxes of KE and APE,

respectively, and DK(p), DA(p) are diffusion terms, with

G(p) = 𝛾𝜃′Q′
𝜃

(7)

C(p) = −𝜔𝛼𝜌, (8)

FA↑(p) = −𝛾(p)𝜔𝜃′2∕2, (9)

FK↑(p) = −𝜔|u|2∕2 − 𝜔Φ, (10)

S(p) = −𝛿ps𝜕t (̂psΦs), (11)

J(p) = −(𝜕p𝛾)𝜔𝜃′2∕2 − 𝜔̂𝛼𝜌. (12)

ps and Φs are surface pressure and surface geopotential,

respectively, and 𝛿ps is one when p = ps and zero other-

wise. The S(p) and J(p) terms are adiabatic processes, but

ones that do not conserve total available energy EK + EA.

However, these terms have been shown to be negligible

in the global mean (Siegmund, 1994; Augier and Lind-

borg, 2013), and so will not be considered further in this

analysis.

3.1 Formulation of the Lorenz energy cycle

The generation and growth of nonaxisymmetric waves and

other disturbances (designated as “eddies”) within terres-

trial planetary atmospheres requires conversion into eddy

kinetic and potential energy from other forms of energy in

the background environment, the ultimate source of which is

solar or stellar irradiation. This process of energy conversion

can be illustrated and quantified most simply with the clas-

sical Lorenz energy cycle (Lorenz, 1955), which provides

a framework for formulating a global mean atmospheric

kinetic energy and available potential energy budget, as well

as the conversion rates between the zonal mean (indicated

by [.]) and “eddy” (.∗) components of these energy forms.

In addition, we designate time-averaged quantities by (.)
and mass-weighted, vertically integrated areal averages (for

example, of a quantity Q) by

1

4𝜋a2g ∫ ∫ ∫
ps

0

Q dp dx dy = 1

4𝜋a2 ∫ ∫ ∫ Q dm =
⟨

Q
⟩
.

(13)

Following, Peixóto and Oort (1974) and James (1995) for

example, the conservation equations for kinetic and potential

energy can be written as

dAZ

dt
= GZ − CZ − CA, (14a)

dAE

dt
= GE + CA − CE, (14b)

dKZ

dt
= CZ − CK − FZ, (14c)

dKE

dt
= CK + CE − FE, (14d)

where KZ, KE, AZ, and AE refer to zonal mean kinetic

energy, eddy kinetic energy, zonal mean available poten-

tial energy, and eddy available potential energy, respectively.

The conversion rates among these components are as shown

in Figure 2 and are as defined in pressure coordinates, for

example, by James (1995). GZ and GE are diabatic genera-

tion terms (if positive) for AZ and AE, while FZ and FE are

dissipation terms for KZ and KE.

There are at least two principal mechanisms of eddy gen-

eration within planetary atmospheres: barotropic instability

and baroclinic instability. The physical pictures of these two

different eddy-generation mechanisms can be clearly distin-

guished from the viewpoint of energy conversion. Eddies

generated through barotropic instability are fed directly by

the zonal mean kinetic energy, implying the conversion route

of KZ→KE to be important. Baroclinic instability, on the

other hand, converts available potential energy into eddy

kinetic energy through the so-called ‘sloping convection’,

which corresponds to the conversion route of AZ→AE→KE.
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AZ KZ

AE KE

CZ

CE

CA CK

GZ

GE

FZ

FE

FIGURE 2 Schematic of Lorenz energy cycle. AZ: zonal mean available

potential energy; AE: eddy available potential energy; KZ: zonal mean

kinetic energy; KE: eddy kinetic energy. The generation, conversion, and

dissipation terms are shown as G*, C*, and F*, respectively (where * is

either Z or E)

Therefore, the dominating mechanism of eddy generation

can be appreciated by comparing the relative intensity and

direction of CK and CE.

3.2 Spherical harmonic transformation

The horizontal structure of the flow and other quantities

(such as energy conversion rates) can be further decomposed

into spectra by projection on to suitable sets of eigenfunc-

tions. A scalar function (for example, 𝜃′) on a sphere can be

transformed into spherical harmonic spectral space via

𝜃′(xh, p) =
∑
n≥0

∑
−n≤m≤n

𝜃′nm(p)Ynm(xh), (15)

where n is the total and m the zonal wavenumber index. Ynm
are spherical eigenfunctions with 𝛻2

h
Ynm = −n(n + 1)Ynm∕a2

(where 𝛻h is the horizontal gradient operator and 𝛻2
h

the cor-

responding Laplacian). The horizontal mean of the product of

two scalar variables is then

⟨𝜔Φ⟩ = ∑
n≥0

∑
−n≤m≤n

(𝜔,Φ)nm, (16)

with

(𝜔,Φ)nm = Re{𝜔†
nmΦnm}, (17)

where Re{X} is the real part and X† is the complex conjugate

of a complex number X (Augier and Lindborg, 2013).

For the horizontal velocity field, u, a decomposition into

divergent and rotational (nondivergent) components can be

performed via Helmholtz decomposition:

u = 𝜵h ∧ (𝜓ez) + 𝜵h𝜒 = ur + ud, (18)

with reference to the horizontal streamfunction 𝜓(xh, p) and

the horizontal velocity potential 𝜒(xh, p). Using this decom-

position, we can obtain the vorticity 𝜁 and the horizontal

divergence 𝛿:

𝜁 = roth (u) = ez ⋅ (𝜵 ∧ u) = 𝜵2
h
𝜓, (19)

𝛿 = divh (u) = 𝜵h ⋅ u = 𝜵2
h
𝜒. (20)

This decomposition is then used to calculate the horizontal

mean of a scalar product between two horizontal vector fields

a and b:

â ⋅ b =
∑
n≥0

∑
−n≤m≤n

(a, b)nm, (21)

with

(a, b)nm = a2

n(n + 1)
Re{roth (a)†nmroth (b)nm

+ divh (a)†nmdivh (b)nm}, (22)

(see for example, Augier and Lindborg, 2013).

Using Equation 16 for scalars and Equation 21 for vector

fields, the spectral versions of APE and KE can be obtained

respectively as

Enm
A

= 𝛾(p) (𝜃
′, 𝜃′)nm

2
= 𝛾(p)

|𝜃′nm(p)|2
2

, (23)

Enm
K

= (u,u)nm

2
= a2(|𝜁nm|2 + |𝛿nm|2)

2n(n + 1)
. (24)

The APE or KE spectrum can be further decomposed into

a zonal mean spectrum and an eddy (or residual) spectrum as

the following (for example, for KE):

En
KZ
(t) = 1

4

a2

n(n + 1)
(|𝜁n0(t)|2 + |𝛿n0(t)|2), (25)

En
KE
(t) = 1

4

a2

n(n + 1)

n∑
m=−n

(|𝜁nm(t)|2 + |𝛿nm(t)|2);m ≠ 0,

(26)

where En
KZ

and En
KE

represent the zonal and eddy (residual)

part of the spectrum respectively, such that En
K
= En

KZ
+ En

KE
.

3.3 Calculation of spectral enstrophy fluxes

The nonlinear spectral enstrophy transfer flux (Boer and

Shepherd, 1983; Shepherd, 1987; Burgess et al., 2013) can

provide more detailed insights into the enstrophy redis-

tribution among different wavenumbers through nonlinear

eddy–eddy interactions. Starting from the vorticity equation

𝜕𝜁

𝜕t
= −(ur ⋅ 𝛻)𝜁 −, (27)

where ur = (ur, vr) is the rotational velocity and  repre-

sents the effects on vorticity evolution due to divergence and

other vorticity sources and sinks, multiply by 𝜁 to obtain the

equation for enstrophy (G = 1

2
𝜁2):

𝜕G
𝜕t

= −𝜁(ur ⋅ 𝛻)𝜁 − 𝜁. (28)

In spectral space, this can be rewritten as

𝜕Gn

𝜕t
= Jn +n, (29)

where the interaction term Jn is

Jn = −1

4

n∑
m=−n

[
𝜁†nm(ur ⋅ 𝛻𝜁)nm + 𝜁nm(ur ⋅ 𝛻𝜁)†nm

]
. (30)
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Note that interaction terms only redistribute enstrophy

among wavenumbers, so

N∑
n=0

Jn = 0.

We can then define the enstrophy spectral flux as

n =
n∑

l=N
Jl, (31)

where the sign is adopted conventionally such that a posi-

tive value corresponds to a forward cascade, while a negative

value corresponds to an inverse cascade.

The interaction terms and spectral fluxes of enstrophy can

be further decomposed into contributions from eddy–eddy

interactions and eddy–zonal flow interactions (Burgess et al.,
2013). Nonlinear interaction terms of enstrophy due to

purely eddy–eddy interactions, Jn(e), can be obtained from

Equation 30, but carrying out the sum in m for m ≠ 0 only.

The contribution to Jn through eddy–zonal mean interactions

is then simply Jn(z) = Jn − Jn(e). In this way, the spectral flux

of enstrophy can be decomposed as n = n(z) +n(e).

3.4 Spectral energy budget

The spectrally resolved energy budget can be obtained by

inserting Equations 23 and 24 into Equations 5 and 6, result-

ing in (Augier and Lindborg, 2013)

𝜕tEnm
K
(p) = Cnm(p) + Tnm

K
(p) + Lnm(p) + 𝜕pFnm

K↑(p) − Dnm
K
(p),
(32)

𝜕tEnm
A
(p) = Gnm(p) − Cnm(p) + Tnm

A
(p) + 𝜕pFnm

A↑(p) − Dnm
A
(p),
(33)

where Gnm is the spectral APE generation term, Cnm is the

spectral conversion term, and Tnm
K

and Tnm
A

are the spectral

transfer terms (of KE and APE, respectively) due to nonlinear

interactions. Lnm is a spectral transfer term due to Coriolis

forces and Fnm
K↑

and Fnm
A↑

are vertical fluxes. Dnm
K

and Dnm
A

are

diffusion terms. These terms are computed via

Cnm(p) = −(𝜔, 𝛼𝜌)nm, (34)

Tnm
K
(p) = −(u, v ⋅ 𝜵u)nm + 𝜕p(u, 𝝎u)nm∕2, (35)

Tnm
A
(p) = −𝛾(𝜃′, v ⋅ 𝜵𝜃′)nm + 𝛾𝜕p(𝜃′, 𝜔𝜃′)nm∕2, (36)

Lnm(p) = −(u, f [𝜙]ez ∧ u)nm, (37)

Fnm
A↑(p) = −𝛾(𝜃′, 𝜔𝜃′)nm∕2, (38)

Fnm
K↑(p) = −(𝜔,Φ)nm − 𝜕p(u, 𝝎u)nm∕2, (39)

Gnm(p) = 𝛾(𝜃′,Q′
𝜃)nm, (40)

Dnm
A
(p) = −𝛾(𝜃′,D𝜃[𝜃])nm. (41)

The spectral energy and tendency terms obtained in the

previous sections are functions of time, zonal wavenum-

ber m, total wavenumber n, and pressure p. To obtain a

one-dimensional spectrum or spectral flux from these terms,

a dependence upon n alone would be preferable, for reasons of

simplicity of interpretation. The time dependence is removed

by averaging the resulting spectral quantities over multiple

time steps. Following a summation over zonal wavenumbers

and a vertical integration over a pressure range from pb at the

lowest level (usually the surface) to pt at the top level, the

vertically integrated KE spectrum is obtained via

EK[n]
pb

pt
= ∫

pb

pt

dp
g

∑
−n≤m≤n

Enm
K
(p) (42)

and the vertically integrated KE spectral flux via

ΠK[n]
pb

pt
=
∑
k≥n

∫
pb

pt

dp
g

∑
−k≤m≤k

Tkm
K
(p), (43)

where
∑

k≥n
∑

−k≤m≤k denotes a cumulative sum (from large

to small wavenumbers). Other spectral quantities can be

similarly vertically integrated and summed. Note that the

cumulative summation is performed from large wavenumbers

to small wavenumbers and that all spectral fluxes (barring

conversion and vertical fluxes) are conserved, meaning the

cumulative sum over all wavenumbers n should add up to

zero.

4 LORENZ ENERGY CYCLES AS A
FUNCTION OF 𝛀∗

In this section, we compute the various terms in the Lorenz

energy budget for each of the eight rotation-rate simulations

spanning 1∕16 ≤ Ω∗ ≤ 8 and explore the main trends in

energies and conversion rates. Figures 3 and 4 show how the

terms in the globally and time-averaged Lorenz energy cycles

vary with rotation rate, Ω∗, and thermal Rossby number, 𝑜T,

defined as in Wang et al. (2018) by

𝑜T = RΔ𝜃h

Ω2a2
, (44)

where Δ𝜃h is the Equator-to-pole potential temperature differ-

ence, a the planetary radius and R the specific gas constant.

Figure 3a plots the magnitudes of the various energy reser-

voirs, expressed in units of 100 kJ/m2. This shows the zonal

mean potential energy, AZ, increasing monotonically with Ω∗

and decreasing with 𝑜T, though with only a shallow varia-

tion over the range computed. KZ, on the other hand, exhibits

a maximum around Ω∗ = 1∕8 but then decreases rapidly with

Ω∗ for higher rotation rates. The maximum in KZ corresponds

to 𝑜T ≃ 5. The eddy kinetic and available potential energies

follow similar trends to each other, rising with Ω∗ to a shallow

maximum around Ω∗ = 1∕2 (𝑜T ≃ 0.3) and then decreas-

ing with Ω∗ quite sharply at higher rotation rates. KE is seen

to dominate over AE by a factor ∼ 2–3 until Ω∗ = 4, beyond

which AE > KE.

Variations in the mean energy conversion rates (in units

of W/m2) are shown in Figure 3b. CZ represents the direct

conversion of zonally averaged APE to KE by zonal mean

overturning circulations, and essentially reflects the relative

strengths of the (thermally direct) Hadley cells and (ther-

mally indirect) Ferrel cells within the global circulation. This
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Ω* Ω*

(a) (b)

FIGURE 3 Terms in the Lorenz energy budgets for the series of PUMA-S simulations as a function of Ω∗ and thermal Rossby number: (a) globally averaged

energies (in 105 J/m2); (b) the main energy conversion rates CZ, CA, CE, and CK. Conversion rates are in units of W/m2

behaves more or less as one might expect, with strongly

positive values of CZ at low rotation rates (Ω∗ ≲ 0.4;

𝑜T ≳ 1), where the direct Hadley circulation is dominant,

but becoming negative at higher rotation rates, where the cir-

culation becomes geostrophic and the Ferrel cells become

stronger. This largely reflects the increasing dominance of

baroclinic eddies at high rotation rates. The barotropic con-

version term, CK, also undergoes a similar reversal of sign

around (Ω∗ ≃ 0.3; 𝑜T ≃ 1), indicative of a transition from

barotropically energized eddies (with CK > 0) at low rota-

tion rates to baroclinically energized eddies (with CE > 0

and CK < 0) at higher rotation rates. This interpretation is

consistent with 𝑜T ≃ 1 as the criterion, since 𝑜T ≲ 1 is

also a criterion for strong baroclinic instability. Both conver-

sion rates (CZ and CK) evidently become vanishingly small

as Ω∗ becomes large. This likely reflects the tendency for

geostrophic velocities to decrease with increasing Ω, together

with the corresponding vertical velocities and the most ener-

getic length-scales for eddies.

As anticipated in the previous subsection, the strengths of

the baroclinic conversion rates, CE and CA, reach their max-

imum at Ω∗ = 1∕2. This also agrees with results from Del

Genio and Suozzo (1987), in which baroclinic eddies peak in

energy conversion efficiency at Ω∗ = 1∕2, and is also consis-

tent with the peak of meridional eddy heat flux at Ω∗ = 1∕2

as suggested by the peak in CA + CK in Figure 4 (see also

figure 10a of Wang et al., 2018). Pascale et al. (2013), how-

ever, found that the rotation rate corresponding to this peak in

CE was sensitive also to other parameters, notably the strength

of the bottom friction, which may account for slight differ-

ences in this peak being seen in other studies (for example,

Kaspi and Showman, 2015).

Ω*

FIGURE 4 Terms in the Lorenz energy budgets for the series of PUMA-S

simulations as a function of Ω∗ and thermal Rossby number, showing the

combinations CE+CZ (representing the total APE to KE conversion rate)

and CA+CK (representing the total conversion from zonal mean to eddy

energy. Conversion rates are in units of W/m2

5 KINETIC AND AVAILABLE POTENTIAL
ENERGY SPECTRA

In the following section, the KE and APE spectra are

employed as a diagnostic to reveal insights into processes such

as the jet formation mechanism and the transfer of energy and

enstrophy across different scales.
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5.1 Slow rotation (𝛀∗ < 1)

The energy spectra for rotation rates Ω∗ < 1 are shown in

Figure 5a–d. These simulations were carried out at a hori-

zontal resolution of T42, so it is likely that there are some

artifacts in the spectra, due to model diffusion at the highest

wavenumbers. This is apparent as a steepening of the spec-

trum for wavenumbers k ≳ 30. However, for the rest of the

spectrum it appears to follow a trend towards a self-similar

form with a slope close to n−5∕3 changing from a n−3 spec-

trum as Ω∗ decreases. This trend towards a KBK-like slope

would appear to suggest a trend towards a spectrum dom-

inated by an energy-dominated cascade, though it is not

immediately apparent whether this would entail upscale or

downscale transfers of KE. This will be discussed further

in the next section on spectral fluxes, but, assuming that

kinetic energy is converted from potential energy by baro-

clinic instabilities at scales close to the Rossby deformation

wavenumber, nD, and given the trend in nD towards small

n as Ω∗ decreases (for example, see Kaspi and Showman,

2015; Wang et al., 2018), it would seem likely that the cas-

cade would be predominantly downscale if injection of KE

is taking place mainly at near-planetary scales.

Even-numbered wavenumbers generally appear stronger in

KE than odd-numbered modes, with the opposite trend in

APE, which reflects the symmetries of the winds and temper-

ature structure about the equator with annual mean forcing

that is symmetric about the equator. The spectra are also dom-

inated on average by kinetic energy for these rotation rates,

with a typical ratio EK(n)∕EA(n) ∼ 2–3.

In contrast to these changes to the eddy part of the spectrum,

the zonal components of both of the energies follow an n−5

slope for the midrange in wavenumber space. This seems to

be a generic feature of the spectrum at almost all rotation rates

and is discussed further below. Most spectra (at all values of

Ω∗) show some evidence of a steep drop-off in energy at the

highest wavenumbers, indicative of a region where model dis-

sipation is active, although this is more apparent in some runs

than in others. This may indicate that some runs (notably the

case for Ω∗ = 1) could be somewhat under-dissipated, which

may have possible implications for the shape of the spectrum

in other wavenumber ranges. Given limitations on computa-

tional resources available to us for this study, however, some

compromises were necessary in our attempts to capture both

realistic inertial ranges and an adequate range of dissipation

(we are very far, of course, from the conditions appropri-

ate for direct numerical simulation). Such problems are not

unique to this study (see, for example, Hamilton et al., 2008,

for examples at much higher resolution), though the sensitiv-

ity of the KE and APE spectra to dissipation should ideally be

investigated further in future work.

5.2 Spectra at 𝛀∗ ≥ 1

Figure 5e–h shows the KE and APE spectra of simulations

with 1ΩE ≤ Ω ≤ 8ΩE. These simulations were performed at

T170 resolution (except for the Ω∗ = 1 simulation at T127).

The Earth-like run at Ω∗ = 1 (Figure 5e) exhibits a n−3 slope

between wavenumbers 20 and 90, as well as a fairly consis-

tent n−5 slope in the zonal component. It is interesting to note

that both KE and APE behave fairly similarly in this region.

At lower wavenumbers (k ≲ 10), the spectrum flattens, with

a hint of a segment tending towards the KBK n−5∕3 form

between 2 − 3 ≲ k ≲ 10, suggestive of an energy-dominated

upscale cascade.

This is broadly consistent with various previous studies

based on observational/reanalysis datasets of Earth’s atmo-

sphere (for example, see Baer, 1974; Boer and Shepherd,

1983; Koshyk et al., 1999), indicating the probable existence

of a forward enstrophy cascade inertial range. The zonal spec-

trum in both APE and KE is characterized by a much steeper

−5 slope, however, which is still not well-understood despite

the prediction of a −5 slope in the early work, for example,

of Rhines (1975). Rhines showed that, near the crossover

scale from Rossby waves to turbulence (i.e., near the Rhines

wavenumber kR ≃ (𝛽∕U)1∕2, where k represents the total

dimensional wavenumber k = n∕a), the typical wind speed

is U ∼ 𝛽∕k2. Since E = kE(k) ≃ 1∕2U2, the −5 power

law can then be revealed as E(k) ∼ 𝛽2k−5. However, this

does not explain the extended −5 slope solely in the zonal KE

spectrum. A study by Huang et al. (2001) (and developed fur-

ther, for example, by Sukoriansky et al., 2002; Galperin et al.,
2004; 2006; 2010) identified the −5 slope associated with

the zonal KE spectrum with a so-called zonostrophic regime,

prevalent with strong planetary rotation and weak dissipation.

They further suggested that the shape of the zonal spectrum

can be qualitatively explained by the stabilizing effect of 𝛽

on the zonal jets, According to Huang et al. (2001), Suko-

riansky et al. (2002), Galperin et al. (2006), and others, the

𝛽-effect modifies the necessary condition for barotropic insta-

bility from 𝜕yy[u] = 0 to 𝛽−𝜕yy[u] = 0 somewhere within the

flow domain. This means that the stability criterion is eased

by the 𝛽-effect from 𝜕yy[u] ≠ 0 to 𝛽 − 𝜕yy[u] ≠ 0, which

allows the existence of velocity inflection points (𝜕yy[u]=0)

and enables more energy to reside in the zonal modes with-

out violating the stability criterion. However, this argument

is somewhat heuristic, leading some (for example, Danilov

and Gurarie, 2004) to question whether a well-defined

power-law scaling relationship even exists for the zonal KE

spectrum.

Figure 5f–h shows the APE and KE spectra of the regime

of multiple zonal jets. The strong zigzag feature of the zonal

KE spectrum at small spherical wavenumbers is due to the

hemispheric symmetry of the predominantly zonal struc-

tures across the globe. The classic −5∕3 slope of an inverse

energy cascade in KE cannot be found, indicating that nei-

ther the “classical” picture of 2D isotropic turbulence nor

the zonostrophic regime of Sukoriansky et al. (2002) and

Galperin et al. (2010) is applicable to the multiple jet flows

found in this regime (at least under the conditions explored

here). As shown by Wang et al. (2018), the energy-containing
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(a) Ω* = 1
16 , T42 Resolution (b) Ω* = 1

8 , T42 Resolution

(c) Ω* = 1
4 , T42 Resolution (d) Ω* = 1

2 , T42 Resolution

(e) Ω* = 1 , T127 Resolution (f) Ω* = 2 , T170 Resolution

(g) Ω* = 4 , T170 Resolution (h) Ω* = 8 , T170 Resolution

FIGURE 5 Globally averaged KE (orange) and APE (blue) spectra (each decomposed into zonal and eddy components) for PUMA-S runs with

Ω∗ = 1∕16, 1∕8, 1∕4, and 1∕2 (at horizontal resolution T42), Ω∗ = 1 (at resolution T127) and Ω∗ = 2, 4, 8 (at resolution T170)
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wavenumber, Rossby deformation wavenumber, and Rhines

wavenumber are not widely separated in this regime, although

the KE spectrum is likely to be energized on scales close to LD

through conversion of APE by baroclinic instabilities. Such a

lack of scale separation might suggest that the inverse energy

cascade, initiated around the deformation wavenumber, nD

(Wang et al., 2018), through eddy–eddy interactions, has been

significantly suppressed because of a lack of room to develop

an energy-conserving inertial range, although this will be

investigated further below with respect to the computed spec-

tral fluxes. Such closeness of the Rhines and deformation

scales also suggests that the simulated flows are far from the

conditions necessary to observe fully developed zonostrophic

dynamics (for example, Galperin et al., 2006; 2010).

With increasing rotation rate (see Figure 5f–h), the max-

imum of the zonal component moves to higher wavenum-

bers and the n−3 slope that could be identified so well at

Ω∗ = 1 becomes inclined towards an even steeper slope

at higher wavenumbers. This is likely due to the effect of

model-inherent hyperdiffusion, as a result of which the region

over which a n−3 slope can be discerned becomes smaller and

smaller. The same hyperdiffusion effect can be identified for

the n−5 slope of the zonal component (see also the discus-

sion of this power law above). Overall, however, the slope

of the zonal kinetic energy spectrum in these regimes is not

well understood. Nevertheless, our work reports that the zonal

component of the APE spectrum does have the same slope.

The ratio of KE to APE also varies significantly with

wavenumber in this regime, with APE dominating over KE at

n = 2 and with APE/KE ranging from ∼ 30 at Ω∗ = 1 to more

than 108 at Ω∗ = 8. At higher wavenumbers, however, within

the n−3 region, KE is seen to dominate, with a KE/APE ratio

that ranges from around 3 at Ω∗ = 1 down to (1) at Ω∗ = 8.

6 SPECTRAL TRANSFER FLUXES OF
ENERGY AND ENSTROPHY FOR VARYING
ROTATION RATES

In this section, we present enstrophy and energy spectral

fluxes of the PUMA-S simulations discussed previously. This

is intended to provide a more detailed view of the general

spectral transfer pathways within our simulated atmospheric

circulations across a range of parameter space, in particular

using the spectral energy budget formulation of Augier and

Lindborg (2013). From such a spectral energy budget, we can

answer the question of how the energy of macroturbulent fluid

motion is transported between scales and converted between

APE and KE. More specifically, we are interested in see-

ing at which scale kinetic energy is inserted into the system

and where this energy ends up. We distinguish between two

modes of transfer between scales, depending upon whether

transfer is spectrally local, between nearby scales (represent-

ing a conventional energy cascade), or nonlocal, in which

energy is directly transferred from one scale to another across

large wavenumber intervals (akin to a “waterfall”: M. E.

McIntyre, 2016). The latter can occur, for instance, between

disturbances of arbitrary wavenumber and the (m= 0) zonal

flow.

To identify this interaction between eddies and the zonal

flow (the eddy–mean flow interaction), we perform an addi-

tional decomposition into zonal and eddy components. This

decomposition was achieved by taking the eddy component

(via Xeddy = X−[X]) of each input variable (i.e., u, v, 𝜔,Φ,T)

and recalculating all the fluxes from this (for which the 𝛾

value obtained from the initial flux calculation is used). The

zonal component is then obtained as the residual. For spec-

tral fluxes, the “eddy” component encompasses eddy–eddy

interactions, while the “zonal” component consists of resid-

ual interactions with the zonal mean flow (i.e., combin-

ing eddy–zonal and zonal-zonal interactions). In the text

below, the terms wavenumber and total wavenumber are used

synonymously.

6.1 Spectral enstrophy fluxes

Figure 6 shows a sequence of profiles of spectral enstrophy

fluxes, n, covering the full range of Ω∗. Theoretical discus-

sions of quasigeostrophic turbulence (for example, Charney,

1971; Salmon, 1978; 1980) suggest that the flux of enstrophy

should be downscale throughout the range of scales, although

this depends upon the flow satisfying conditions for quasi-

geostrophy. In the cases shown in Figure 6, this trend is more

or less consistent with this expectation, but with some excep-

tions. At low rotation rates (Ω∗ ≤ 1∕4 or 𝑜T ≳ 1), where

the quasigeostrophic approximation is not likely to be valid,

enstrophy fluxes are generally quite weak at all scales, though

with a slight increasing trend towards the smallest resolved

scales, where dissipation becomes significant. At these small

scales, the zonal–eddy interaction appears to dominate.

For Ω∗ ≳ 1∕2 (or 𝑜T ≲ 1), however, enstrophy fluxes

become significantly larger and positive at moderate to small

scales, as anticipated for quasigeostrophic turbulence. At

larger scales, there is a small tendency for n to become neg-

ative, indicating a weak upscale cascade range and implying

a spectrally local net source of enstrophy at the wavenum-

ber ns at which n changes sign. This wavenumber gradually

increases withΩ∗ from around n = 5–6 atΩ∗ = 1∕2 to n ≃ 75

at Ω∗ = 8. The magnitude and distribution of enstrophy flux

between eddy–eddy and zonal–eddy terms also change with

Ω∗. Enstrophy fluxes appear relatively weak for Ω∗ ≲ 1 and

are dominated by zonal–eddy interactions. At higher rotation

rates, the eddy–eddy interactions become more dominant,

especially at higher wavenumbers, indicating a conventional,

spectrally local cascade of enstrophy, which becomes much

stronger at Ω∗ = 2 and 4 and self-similar in shape as it moves

towards higher wavenumbers as Ω∗ increases. Fluxes become

weaker at the highest Ω∗ as ns approaches the resolution limit

and dissipation presumably acts to damp the dynamics. This

should be investigated further, though this will require model
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FIGURE 6 Spectral fluxes of enstrophy k (also decomposed into eddy–eddy and residual zonal interaction components) for PUMA-S runs with

Ω∗ = 1∕16, 1∕8, 1∕4, 1∕2, 1 (at horizontal resolution T42) and Ω∗ = 2, 4, 8 (at resolution T170)

resolutions that were beyond the scope of what was feasible

in the present study.

6.2 Spectral energy fluxes

Figure 7 shows spectral fluxes for KE (ΠK), APE (ΠA), and

the total energy Π = ΠK + ΠK, as well as the cumulative

conversion  from APE to KE for simulations across the

full range of Ω∗. The fluxes have been decomposed into

eddy–eddy (“eddy”) and residual zonal (“zonal”) interaction

components (as well as between rotational (nondivergent)

and divergent components of the flow, shown in more detail

for KE in Figure 8 below). The terms presented here are

integrated over the whole pressure range of the simulated
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(c) (d)

(e) (f)
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FIGURE 7 Spectral fluxes of KE ΠK, APE ΠA, and total energy Π = ΠA + ΠK, as well as conversion  (each decomposed into eddy–eddy and residual

zonal interaction components) for PUMA-S runs with Ω∗ = 1∕16, 1∕8, 1∕4, 1∕2 (at horizontal resolution T42), Ω∗ = 1 (at resolution T127), and Ω∗ = 2, 4, 8

(at resolution T170) [Colour figure can be viewed at wileyonlinelibrary.com]

atmospheres (see section 3.4). The figure shows that in all

cases the total energy flux Π is always positive, signifying

a downscale transfer (towards higher wavenumbers) of total

energy. Potential energy fluxes ΠA are also uniformly posi-

tive, indicative of downscale transfers, with some indications

of inertial ranges (with fluxes independent of wavenumber) in

some cases.

6.2.1 Spectral energy fluxes: 𝛀∗ = 1
For the Earth equivalent simulation at Ω∗ = 1 with T127 res-

olution and normal friction (Figure 7e), the total energy flux

Π (black solid line) rises sharply at wavenumbers n = 2 and

3 to a value of ∼ 1.6 W/m2, then stays roughly constant until

n = 7, before falling rapidly between wavenumbers 8 and 12

and then decreasing more slowly towards zero at the highest

http://wileyonlinelibrary.com
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(e) (f)
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FIGURE 8 Spectral fluxes of KE ΠK, decomposed into divergent and rotational components (each decomposed into eddy–eddy and residual zonal interaction

components) for PUMA-S runs with Ω∗ = 1∕16, 1∕8, 1∕4, 1∕2 (at horizontal resolution T42), Ω∗ = 1 (at resolution T127), and Ω∗ = 2, 4, 8 (at resolution T170)

wavenumbers. Π consists of two main components, of which

the APE component, ΠA, dominates over the KE component,

ΠK, up to a wavenumber of 50. Because of its larger mag-

nitude, the trend of the APE flux ΠA is similar to that of Π,

except that its slope within the ∼constant region between n =
3 and 8 is less steep. This difference between Π and ΠA is the

result of an upscale energy transfer, ΠK, of KE between n = 3

and ∼10–12. At around n = 11, there is an inflection point

in the KE spectrum where ΠK changes sign. This implies

that kinetic energy is being transported towards smaller scales

(i.e., larger wavenumbers) for n ≳ 10–12 and towards larger

scales for n ≲ 10. In this region of the spatial spectrum,

the baroclinic conversion, , has a steeply descending slope

with wavenumber. This is a cumulative term (compare with
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Equation 43), and so such a strong negative slope in  denotes

a conversion of APE to KE in this wavenumber range of

magnitude, Cn = (n = 15) − (n = 7) ≃ 0.9 W/m2.

Regarding the partitioning between eddy–eddy and residual

zonal components, the zonal components evidently domi-

nate ΠK and ΠA at smaller wavenumbers (1 ≤ n ≲ 20)

in Figure 7e, while eddy–eddy components gain in rela-

tive importance at higher wavenumbers (n > 20), although

the total fluxes there are relatively low. On the other hand,

the main component of the conversion term occurs in the

eddy–eddy component. Taking all of these points together,

the Earth-like case is evidently consistent with the defin-

ing behaviour of idealized baroclinic turbulence (see, for

example, Vallis, 2006). At the injection wavenumber for

KE (around the Rossby deformation radius wavenumber

nD ∼ 8–12; see Figure 8e), APE is converted into KE

via the eddy–eddy component of Cn (which is related to

the baroclinic CE component of the Lorenz energy bud-

get; see Figure 3). The resulting KE is transported mostly

upscale into the zonal component by an inverse barotropic

conversion (compare with CK in the Lorenz budget), with a

smaller amount of KE being transported downscale where the

eddy–eddy interaction component dominates (compare with

Figure 8e).

At smaller wavenumbers, we see that a zonal component

also contributes to . The entire cumulative sum of  (i.e., the

value depicted at wavenumber n = 1) is comparable in sign

and magnitude to CZ in the Lorenz energy budget (Figure 3).

This conversion shows that CZ is negative for wavenumbers

n = 4–7 and positive at the smallest wavenumbers. It is

likely that zonal–zonal components (associated with the Eule-

rian mean Hadley and Ferrel circulations) dominate at low

wavenumbers, while zonal–eddy components are more sig-

nificant at higher wavenumbers. The thermally direct Hadley

circulation, which dominates at low latitudes, leads to posi-

tive CZ, which may account for the behaviour of Cn for n ≤ 4.

However, the Ferrell cell is generally thermally indirect, so

would be expected to make a negative contribution to CZ, as

is apparent for n = 4–7.

Segments of the spectrum where the spectral fluxes ΠK,

ΠA, or Π itself, are approximately constant are identified as

inertial ranges, and two such regions can be discerned in this

case. Firstly, the region between wavenumbers n = 3 and 8,

where ΠA is constant (and Π and ΠK are almost constant),

may describe an inertial range characterized by forward baro-

clinic APE transfers and an inverse (rotational) barotropic KE

flux. The second region lies at n ≃ 30–80 (see Figure 8e

for a close-up of ΠK) with both forward APE and KE cas-

cades. This second wavenumber region can be identified in

the energy spectrum with an n−3 slope in Figure 5e. The first

region, however, is not so easily identifiable with features in

the spectrum. Further comparison with Figure 5e, however,

confirms an association of the n−5 slope in zonal energies

with a downscale flux of both KE and APE. The narrow iner-

tial range around 3 ≤ n ≤ 8 in KE occurs mainly in the

zonal–eddy component, which means that most of the energy

jumps directly between the zonal mean wind and a range of

energy-significant nonaxisymmetric wavenumbers (more like

a “waterfall” than a “cascade”?). For the other inertial range

for 30 ≤ n ≤ 80, however, the transfers are more dominated

by eddy–eddy interactions. This means that the latter inertial

range involves not only scales at which no dissipation occurs

while cascading, but also scales where only weak interactions

between the zonally symmetric flow and the respective eddy

scales occur.

6.2.2 Spectral energy fluxes: rapidly rotating cases (𝛀∗ > 1)
With increasing rotation rate (Figures 7f–h), the Rossby

deformation radius decreases (and nD increases), so that

the wavenumber at which most baroclinic conversion occurs

increases commensurately. At Ω∗ ≥ 2, the KE inertial range

at large wavenumbers, seen for Ω∗ = 1 (see Figure 8e), can

no longer be discerned because it starts to close in on the res-

olution cutoff in these simulations at wavenumber n = 170,

where it becomes affected by hyperdiffusion. However, the

inertial range in APE flux widens and flattens with increasing

rotation rate in a region that corresponds to a positive slope

in the energy spectra (compare with Figure 5f–h).

Figure 8e–h shows the spectral kinetic energy flux for sim-

ulations with Ω∗ = 1, 2, 4, 8 in detail. As mentioned above,

for Ω∗ = 1 (Figure 8e) we can see that the energy injected at

the Rossby deformation length-scale through conversion from

APE by baroclinic instability is transferred both upscale and

downscale (indicated by the red solid line). The upscale com-

ponent can be identified with an upscale barotropic transfer

of KE by the rotational part of the flow, which is dominated

by the zonal interaction components. The downscale compo-

nent at higher wavenumbers, however, is dominated by the

divergent eddy–eddy interactions. With increasing rotation

rate (Figure 8f–h), however, in contrast to theΩ∗ = 1 case, the

divergent mode decreases sharply in magnitude, so that, at the

highest rotation rates, only the rotational part of the flux trans-

fers energy in either direction. In addition, the contribution

of the eddy–eddy interaction terms at larger wavenumbers

becomes stronger. At the highest values of Ω∗, therefore, the

macroturbulent interactions are almost entirely dominated by

the rotational flow, with the divergent eddies playing little

role.

6.2.3 Spectral energy fluxes: slowly rotating cases (𝛀∗ < 1)
Figure 7a–d shows the spectral energy fluxes for slowly

rotating simulations (Ω∗ = 1∕16, 1∕8, 1∕4, 1∕2). With

decreasing rotation rate, the baroclinically active region (i.e.,

with downscale ΠA and negative slope in ) identified in

the previous section moves towards smaller wavenumbers.

Between Ω∗ = 1∕8 and 1∕4, however, this baroclinically

dominated behaviour is suppressed, giving way to a quite dif-

ferent pattern of fluxes at the lowest values of Ω∗. This trend

is consistent with that found by Mitchell and Vallis (2010),
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who observed that their super-rotating simulated circulations,

unlike Earth-like cases, were not dominated by baroclinic

zonal–eddy interactions, as indicated by a lack of divergence

of the vertical component of the EP fluxes (compare with

figure 7 of Mitchell and Vallis, 2010). In addition, the zonal

components of , which were comparatively small at higher

values of Ω∗, now begin to dominate at all length-scales.

This occurs because, at smaller rotation rates (larger values of

𝑜T ≳ 10), the Rossby deformation length-scale exceeds the

planetary radius and APE is then injected directly into the KE

reservoir at very low wavenumbers, via interactions with the

zonal mean flow. zonal at n = 1 is again very similar to CZ in

the corresponding Lorenz budget (cf Figure 3), which points

towards a strong influence of zonal–zonal interactions in this

conversion term.

At Ω∗ = 1∕16 and 1∕8, the qualitative structure of the

fluxes is therefore entirely different from the more quasi-

geostrophic cases at higher Ω∗. Conversion from APE to

KE now occurs at the smallest wavenumbers, principally via

zonal interactions. In addition, both ΠK and ΠA now fea-

ture a well-developed inertial range in the form of a forward

transfer with an approximately constant spectral flux between

wavenumbers n = 6 and 30. This is indicative of a for-

ward barotropic “waterfall”. In both cases, the zonal–eddy

interactions dominate. However, the influence of eddy–eddy

interactions is still evident and still increases in magnitude at

larger wavenumbers.

Figure 8a–d again features the kinetic energy flux in detail.

In the case of decreasing Ω∗, it is the rotational component

that diminishes and the divergent component of the flux that

controls the forward energy cascade. This suggests a much

greater role for gravity and equatorial inertia–gravity plane-

tary waves, as these do not possess a rotational component.

This would not be unduly surprising, given that the equatorial

waveguide grows in width at low rotation rates to span much

of the planet.

The behaviour identified in this section fits well with

other results obtained for the large thermal Rossby num-

ber regime (𝑜T >> 1). For Ω∗ = 1∕8 and 1∕16, the

baroclinic conversion becomes weak and barotropic effects

become stronger (also apparent in the corresponding Lorenz

energy budgets; Figure 3), such that ΠK > ΠA in this

regime. The flow becomes largely zonal and super-rotating

flow emerges. Unfortunately, this analysis does not help

directly in identifying the mechanism of formation and main-

tenance of the equatorial super-rotation, as this occurs mostly

in the zonal component in a specific region of the globe,

whereas this analysis computes over a global mean and

focusses on the nonzonal spherical wavenumber spectrum.

What we can learn, however, is that the kinetic energy

in the zonal mode of super-rotating cases dissipates via

a downscale cascade that involves both zonal–eddy and

eddy–eddy interactions, with the latter dominating at high

wavenumbers.

7 DISCUSSION

This study has explored how the dynamical transfers of energy

and vorticity between different horizontal scales depend upon

the planetary rotation rate, at least as represented in a highly

simplified, but nevertheless fully nonlinear and generic,

numerical circulation model of a prototypical terrestrial plan-

etary atmosphere. Such explorations are important sources

of insight into the factors that determine the form, structure,

and intensity of atmospheric circulations under various con-

ditions, thereby helping us to understand and quantify the

similarities and differences between different planets of our

own Solar System (and beyond), as well as indicating how

aspects of any atmospheric circulation will scale with key

planetary parameters.

7.1 Lorenz energy budgets

Heat and momentum transport by both eddies and zonally

symmetric meridional overturning provides important contri-

butions to the overall energy budget of an atmosphere. This

is commonly analysed using the framework originally devel-

oped by Lorenz (1955) and is still used as a source of insight

for understanding the atmospheres of Earth and other planets

(for example, Peixóto and Oort, 1974; James, 1995; Schubert

and Mitchell, 2014; Tabataba-Vakili et al., 2015).

In the present work, we have computed how the various

terms in the Lorenz energy budget for a simple, dry, Earth-like

atmosphere vary with Ω∗. Although the magnitudes of the

zonal mean energy reservoirs vary monotonically with Ω∗,

with increasing dominance of APE over KE as Ω∗ increases,

the eddy energies rise to a maximum around the value of Ω∗

where 𝑜T ∼ 1. This is also reflected in most of the con-

version rates, which also peak in magnitude around a value

of 𝑜T between 1 and 0.1. The trends in energy conversion

rate also demonstrate the change in character of the dominant

eddy generation processes from mainly barotropic processes

at low rotation rates towards predominantly baroclinic pro-

cesses at more rapid rotation rates, consistent with the onset

of strong and deep baroclinic instabilities when 𝑜T ≲ 1. At

much higher rotation rates, however, even baroclinic instabil-

ity becomes less effective at energy conversion as the Rossby

deformation radius becomes much smaller than the planetary

radius, leading to a decrease in the intensity of the whole

Lorenz energy cycle as Ω∗ → ∞.

This tendency of the Lorenz energy cycle to peak in inten-

sity around conditions not too far from those of Earth has been

noted before, for example, by Pascale et al. (2013). In their

study, this was associated with a maximum in entropy pro-

duction rates, although the precise conditions were found to

depend not just on rotation rate but also on the strength of

dissipation in the system. We have not sought to explore this

in detail in the present study, but it would be of interest to

investigate further in future work.
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7.2 Spectral energy budgets

The results shown in section 6 present for the first time a

reasonably comprehensive overview of how the pattern of

spectral fluxes of enstrophy and various forms of energy

changes between different planetary circulation regimes. The

simulations span a broad range of parameter space, extending

from an extreme quasigeostrophic limit through to a highly

ageostrophic, super-rotating regime at very low rotation rates,

over which the pattern of enstrophy and energy cascades

changes significantly.

Despite the use of a highly simplified GCM, the results

for Earth-like conditions capture a circulation regime with

a pattern of enstrophy and energy cascades that compares

reasonably well with results from much more realistic mod-

els (for example, Burgess et al., 2013; Augier and Lindborg,

2013; Malardel and Wedi, 2016), at least qualitatively. The

enstrophy fluxes at Ω∗ = 1 indicate a predominantly forward

cascade over most wavenumbers, with a flux that increases

towards high wavenumbers in the baroclinically active tropo-

sphere. The magnitude of the enstrophy flux in the PUMA

simulations is generally smaller than found, for example, by

Burgess et al. (2013) in their reanalysis data by a factor of∼ 5,

but this likely reflects differences in the way the models are

energized, as well as effects of finite spatial resolution. Energy

fluxes at Ω∗ = 1 are broadly comparable with those found by

Augier and Lindborg (2013) in their analyses of Atmospheric

General Circulation Model for the Earth Simulator (AFES)

and European Centre for Medium-Range Weather Forecasts

(ECMWF) simulations, though again somewhat smaller in

magnitude. Vertically integrated, upscale rotational KE fluxes

are around half the magnitude of those in both AFES and

ECMWF simulations, while the forward cascade for n > 20,

which is dominated in all Ω∗ = 1 simulations by divergent

components, is weaker in the PUMA simulations by a factor

∼ 5. Available potential and total energy spectral fluxes, how-

ever, in the PUMA Earth-like simulation were quite compa-

rable in magnitude with numerical weather prediction (NWP)

models at low-moderate wavenumber, though they followed

the AFES model more closely at high wavenumbers, with pos-

itive (downscale) fluxes down to the resolution limit. This is

consistent with the results of Malardel and Wedi (2016), who

also found spectral fluxes to be significantly weaker in their

cases with Held–Suarez (linear relaxation) forcing, suggest-

ing that this approach underestimates the realistic energetic

forcing of the simulated circulation.

Resolution is likely to be a limiting factor for various fea-

tures in the circulation. The KE and APE spectra for Ω∗ =
1 exhibit some features in common with the Earth’s spec-

tra (for example, Nastrom and Gage, 1985; Burgess et al.,
2013) in following an n−3 trend over most of the spectrum for

n ≲ 100 in both KE and APE. With normal levels of surface

drag, however, there is little evidence in the vertically aver-

aged spectrum from the PUMA simulations for the mesoscale

break in the KE spectrum towards n−5∕3 around n ≳ 20. Dis-

sipation may also play an important role in these simulations

in removing energy at scales similar to those where baro-

clinic energy conversion is taking place. These and similar

effects from subgrid-scale parametrizations were noted in the

study by Malardel and Wedi (2016) and it would be of signif-

icant interest to explore this further under conditions that are

significantly different from those of Earth.

As Ω∗ is increased, the results show a gradual transition

from the Earth-like pattern of spectral fluxes, in which both

rotation and divergent KE components contribute to the cas-

cades, towards a more rotationally dominated KE cascade at

all scales. The magnitudes of such fluxes quickly become

quite weak as Ω∗ is increased, probably due to relatively

strong bottom friction. Nevertheless, the upscale segment at

relatively low wavenumbers is dominated by rotational flow,

but at the highest rotation rates (and smaller values of 𝑜T)

the forward KE cascade also becomes dominated by rotational

components. Such a pattern resembles more closely the dis-

tribution of spectral fluxes found in both the Earth’s oceans

(Scott and Wang, 2005; Scott and Arbic, 2007) and Jupiter’s

atmosphere (Young and Read, 2017). Limited spatial reso-

lution probably restricts the ability of the simulated flows

to develop fully inertial ranges, so the KE and APE spectra

are only marginally consistent with expectations of observ-

ing clear enstrophy and KE-dominated cascades. However,

the results are broadly consistent in this regime with some of

the predictions of classical geostrophic turbulence theory, as

summarized schematically in Figure 9a (though with some

modifications discussed further below). These results include

uniformly downscale transfers of APE and total energy, exci-

tation of the KE spectrum around the deformation scale nD in

association with baroclinic instabilities and barotropization,

and near-equipartition between APE and KE spectra at the

highest values of Ω∗. Under Earth-like conditions, however,

some of these classical predictions are not borne out, in partic-

ular because of the significant role of divergent components

of KE and because the deformation scale is not sufficiently

well separated from the planetary scale.

7.3 Zonal jet formation

The results shown in sections 5 and 6 also examine the jet

formation mechanism in terms of KE spectra, with partic-

ular attention to the paradigm of “zonostrophic turbulence”

recently proposed by Galperin and coworkers as a potential

candidate for a universal regime for jet formation in vari-

ous geophysical fluids, including planetary atmospheres (for

example, Sukoriansky et al., 2002; Galperin et al., 2006;

2010). The experiments presented here demonstrate that, pro-

vided surface friction is not too strong, the atmosphere devel-

ops strongly coherent zonal jets with a highly anisotropic KE

spectrum that shares at least some features in common with

the idealized zonostrophic turbulence regime (for example,



2574 READ ET AL.

FIGURE 9 Schematic representations of the cascades of APE (baroclinic

energy) and KE (barotropic energy), following Salmon (1978) and Salmon

(1980), for (a) rapidly rotating, quasigeostrophic atmospheres and (b)

slowly rotating, stratified atmospheres

with −5 and −5∕3 slopes, respectively, in the zonal and eddy

KE spectra: see Sukoriansky et al., 2002; Galperin et al.,
2006; 2010). However, with relatively stronger surface fric-

tion, zonal jets appear in a weaker and more meandering/wavy

form. This is consistent with the “barotropic governor” mech-

anism (for example, James, 1995), which indicates that weak

frictional damping leads to stronger barotropic shear in the

atmosphere, thereby suppressing the growth of baroclinic

instability and making the circulation equilibrate into a more

zonally symmetric state. This evidently also results in the

accumulation of KE in predominantly barotropic zonal flows,

mainly through nonlocal upscale transfers of KE directly from

eddies into zonally symmetric flow components. This is an

aspect of the transfer of energy between scales that was not

considered in the early work of Charney (1971) or Salmon

(1980), but is indicated in Figure 9a to make the point that

the upscale cascade is more complicated and anisotropic than

initially considered.

7.4 An inertio-stratified regime

At values of Ω∗ < 1, both the spectra and pattern of energy

transfers undergo a significant change of regime, taking place

around 𝑜T ≃ 1. The resulting regime at the highest values of

𝑜T, illustrated schematically in Figure 9b, has an entirely dif-

ferent character from any of the quasigeostrophic subregimes.

In this regime (which might be termed inertio-stratified tur-
bulence), the system is energized by differential heating

at the planetary scale in zonally symmetric modes, which

immediately begin cascading energy and enstrophy uniformly

towards smaller scales, following a direct conversion of

zonally symmetric APE into KE. For n ≳ 4, the overall flow

develops a clear inertial range that even our low spatial res-

olution simulations are able to represent quite well, whereby

APE and KE cascade uniformly towards small scales with

a near-constant spectral flux. In this regime, divergent KE

components dominate the KE spectral flux, which in turn

dominates over the APE flux. Both the KE and APE spectra

also adopt a “classical” KBK form with a clear n−5∕3 slope

until the resolution limit is approached. KE dominates the

total energy spectrum, but the ratio of KE to APE appears

to tend towards a fixed value ≃ 2–3. This is clearly distinct

from any of the quasigeostrophic regimes, but the precise

details of which wave modes govern the properties of the cas-

cade in both the horizontal and vertical directions remain to

be explored. This regime exhibits a number of similarities to

the mesoscale and submesoscale regimes in the Earth’s atmo-

sphere and oceans, recently identified by Callies and Ferrari

(2013) and Callies et al. (2014), respectively, in which rela-

tively fast inertia–gravity waves take over the role of Rossby

waves in classical quasigeostrophic turbulence. The KE and

APE spectra, however, do not conform very closely to what

we find in our model spectra. As also discussed by Wang et al.
(2018), these very slowly rotating circulations are dominated

by strongly super-rotating zonal flows. Like the rapidly rotat-

ing, quasigeostrophic regimes, therefore, they are likely char-

acterized by highly anisotropic spectra and energy transfers,

which should be explored in more detail in future work.

Finally, together with the results presented on analyses of

NWP models by Augier and Lindborg (2013), our results

demonstrate that spectral fluxes of energy and enstrophy pro-

vide a very clear and insightful approach to diagnosing the

performance of numerical models. Even the limited results

shown so far indicate some significant differences between

different model formulations, which might be expected to

lead to some helpful advances in model design, based on

sound physical principles.
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