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The turbulent dynamics of Jupiter’s 
and Saturn’s weather layers: order out of chaos?
Peter L. Read1* , Roland M. B. Young1,2 and Daniel Kennedy1,3

Abstract 

The weather layers of the gas giant planets, Jupiter and Saturn, comprise the shallow atmospheric layers that are influ-
enced energetically by a combination of incoming solar radiation and localised latent heating of condensates, as well 
as by upwelling heat from their planetary interiors. They are also the most accessible regions of those planets to direct 
observations. Recent analyses in Oxford of cloud-tracked winds on Jupiter have demonstrated that kinetic energy is 
injected into the weather layer at scales comparable to the Rossby radius of deformation and cascades both upscale, 
mostly into the extra-tropical zonal jets, and downscale to the smallest resolvable scales in Cassini images. The large-
scale flow on both Jupiter and Saturn appears to equilibrate towards a state which is close to marginal instability 
according to Arnol’d’s 2nd stability theorem. This scenario is largely reproduced in a hierarchy of numerical models 
of giant planet weather layers, including relatively realistic models which seek to predict thermal and dynamical 
structures using a full set of parameterisations of radiative transfer, interior heat sources and even moist convection. 
Such models include (amongst others) the Jason GCM, developed in Oxford, which also represents the formation of 
(energetically passive) clouds of  NH3,  NH4SH and  H2O condensates and the transport of condensable tracers. Recent 
results show some promise in comparison with observations from the Cassini and Juno missions, but some observed 
features (such as Jupiter’s Great Red Spot and other compact ovals) are not yet captured spontaneously by most 
weather layer models. We review recent work in this vein and discuss a number of open questions for future study.

Keywords: Jupiter, Saturn, Atmospheres, Dynamics, General circulation model, Weather layer

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/.

Introduction
The visible atmospheres of Jupiter and Saturn exhibit a 
bewildering array of features over a huge range of hori-
zontal scales. Both planets are covered in ubiquitous lay-
ers of clouds, with the upper layers composed mainly of 
ammonia ice but with other substances (including water) 
present at deeper levels (e.g. Irwin 2009). On the larg-
est scales, such clouds are organised into broad bands 
with meridional widths on the order of  104  km, almost 
(but not quite) symmetrically disposed about the equa-
tor and with boundaries closely aligned with lines of lati-
tude. Such cloud bands have been seen on Jupiter since 
around 1630 (e.g. see Graney 2010), but also occur in 

more muted form on Saturn beneath a tenuous layer of 
upper tropospheric haze. The cloud bands are also now 
well established to occur in association with an intense 
and persistent pattern of eastward and westward zonal 
jet streams, with wind speeds ranging from a few tens 
of m s−1 up to nearly 400 m s−1 in Saturn’s equatorial jet 
(e.g. see Ingersoll et  al. 2004; Vasavada and Showman 
2005; Del Genio et al. 2009).

Within this pattern of zonal jets are found a variety of 
waves and vortices on scales ranging from a few hun-
dred km up to that of the cloud bands at around  104 km. 
Such waves and vortices are remarkable both for their 
diversity and also for their persistence and longevity. 
The most famous of these features is Jupiter’s Great Red 
Spot (GRS), a feature which may be traceable back to a 
large spot discovered in the seventeenth century. But 
more recent observations have identified many other fea-
tures that resemble the GRS on both Jupiter and Saturn, 
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though on a somewhat smaller scale. The GRS is a giant 
anticyclone, but persistent cyclonic vortices have also 
been observed though tend to have a less compact and 
circular form (at least for those found at low-mid lati-
tudes) than the corresponding anticyclones. Coherent 
wave trains are also seen from time to time, though few 
are as persistent and apparently stable and regular as Sat-
urn’s North Polar Hexagon. Discovered in images from 
the Voyager spacecraft in the late 1980s (Godfrey 1988), 
this feature is characterised by a regular wavenumber 
m = 6 structure around a latitude of 76° N and has been 
observed most recently by the Cassini spacecraft to per-
sist coherently up to the end of the mission in 2017 and 
has since continued to be observable from Earth-based 
telescopes (Hueso et al. 2020).

Most recently, the Juno mission has significantly 
extended the observational record to include close orbital 
passes over both poles of Jupiter, where a whole new set 
of phenomena have been discovered. At high latitudes, 
Jupiter’s cloud bands and zonal jets are much less evident 
and the dominant features close to the poles are regular 
arrays of almost circular, cyclonic vortices surrounding 
a single cyclone sitting close to the pole itself (Adriani 
et  al. 2018). Infrared images (Adriani et  al. 2018) reveal 
a wealth of small-scale structure associated with such 
vortices, but most remarkable is the extent to which the 
eightfold or fivefold cyclone arrays have remained stable 
and persistent over timescales of at least 1–2 years. Other 
novel findings from Juno have included the discovery that 
lightning, most likely associated with intense moist con-
vective storms involving latent heat release from conden-
sation of water vapour, is most common at high latitudes 
in both the northern and southern hemispheres of the 
planet. Prior to Juno, the only available information on 
Jovian lightning had noted a prevalence of such storms 
in the cyclonic cloud “belts” compared to the anticyclonic 
“zones” (Little et  al. 1999), but could not detect larger 
scale trends with latitude.

Of particular interest from both the Juno and Cas-
sini missions has been the new insights and constraints 
provided on the vertical structure of the weather layers 
of Jupiter and Saturn. Until recently, the “weather layer” 
has been commonly assumed to include the region of 
the atmosphere influenced by a combination of solar and 
thermal radiation, upwelling heat from the deep interior 
and moist convection, typically spanning a height range 
down to a pressure level of around 10 bars on both plan-
ets. However, both the Juno and Cassini missions have 
included very close passes in high inclination orbits (in 
Cassini’s case shortly before the end of the mission when 
it was deliberately targeted to enter Saturn’s atmos-
phere) which allowed relatively high order harmonics 
of each planet’s gravity field to be determined. From a 

comparison with predictions from simple models of the 
mass distribution associated with pressure variations 
in balance with hypothetical patterns of eastward and 
westward zonal winds, estimates have been obtained of 
the likely depth scale to which the observed cloud level 
zonal mean zonal winds could extend into the deep inte-
riors of each planet (Kaspi et al. 2018; Galanti et al. 2019). 
The values obtained for the depth scale, ~ 3000  km for 
Jupiter and ~ 9000 km for Saturn, are much deeper than 
is commonly assumed for the weather layers of either 
planet (where radiative forcing and moist convection may 
be prevalent), indicating that the weather layers in these 
planets may be underlain by a pattern of deeper zonal jets 
whose vertical:horizontal aspect ratio is close to O(1) (cf 
Dowling 2019). The presence of these jets, however, is 
consistent with expectations for the depth of their elec-
trically neutral molecular envelopes (Liu and et al. 2008; 
Cao and Stephenson 2017), although uncertainties may 
still be quite large (e.g. see Kong et  al. 2018). Juno has 
also deployed a relatively long wavelength microwave 
mapping sensor which has, among other results, shown 
the perturbations in temperature and  NH3 concentra-
tion within the GRS to penetrate to depths greater than 
300 km (Li et al. 2017). This instrument has also discov-
ered a previously unsuspected, compact and persistent 
“plume” of  NH3 vapour upwelling at the equator, with 
relatively low concentrations at higher latitudes (Li et al. 
2017).

There is now, therefore, a very considerable range of 
observations from both Jupiter and Saturn available to 
guide and constrain models of the structure and dynam-
ics of their weather layers, and to stimulate and challenge 
their further development. In this article, we review the 
current state of knowledge and model development for 
these systems, focusing particularly on questions such as:

 i. What process(es) primarily drive and energise the 
cloud-level meteorology on Jupiter and Saturn?

 ii. Why does the cloud-level circulation self-organise 
into patterns of zonal cloud bands and eastward 
and westward jet streams?

 iii. What factors determine the scales and intensities 
of these zonal jets?

 iv. What processes sustain the most energetic waves 
and vortices in the weather layers of these planets?

 v. What are the implications for the transport of heat, 
momentum and chemical tracers?

 And in particular
 vi. What aspects of the observable flows can be 

accounted for solely by the dynamics of a shallow 
weather layer?
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In this article we consider each of these questions, with 
a particular focus on the energetics of the circulation and 
the extent to which many of the observations can be cap-
tured in a numerical model that is limited to the upper 
troposphere and stratosphere of a Jupiter-like gas giant 
planet. The “Energetics of eddies and zonal jets” section 
considers first the strong zonal mean circulation and 
current ideas for why it takes the form observed, includ-
ing some of the implications for the apparent stability or 
instability of the zonal jets. The “Global circulation mod-
els of gas giant weather layers” section reviews the recent 
development of relatively complex, 3D time-dependent 
numerical models of jovian weather layers, with exam-
ples of some recent successes but also some of their limi-
tations. We conclude in the “Discussion and conclusion” 
section with a brief outlook for future research in this 
area.

Energetics of eddies and zonal jets
The maintenance of the zonal jets on Jupiter by the 
action of atmospheric waves and eddies has been estab-
lished since the time of the Voyager encounters with 
these planets in the early 1980s (Beebe et al. 1980; Inger-
soll et  al. 1981). Velocity measurements from manually 
tracking cloud motions in Voyager ISS images allowed 
the estimation of zonally averaged horizontal eddy 
momentum fluxes 

(

u′v′
)

 and the shear structure of the 
zonal mean zonal flow 

(

dū/dy
)

 , from which the rate 
of transfer of kinetic energy into the mean zonal flow 
could be computed. The measured rate of transfer (typi-
cally 1–3.5 × 10−4 W  kg−1) was initially greeted with 
some scepticism (e.g. Sromovsky et  al. 1982), on the 
grounds that the manual method of velocity tracking 
used by Ingersoll et al. (1981) could inadvertently intro-
duce biases in the calculation. This was important, not 
least because were such a large apparent transfer rate 
to extend significantly from Jupiter’s cloud tops into the 
deeper atmosphere (e.g. down to pressure levels of ~ 3 
bars) it would imply that more than 10% of the incoming 
thermal energy from solar and internal heating was being 
converted into zonal kinetic energy.

More recent work has employed more advanced, auto-
mated image correlation techniques to measure velocity 
fields for both Jupiter (Salyk et al. 2006; Asay-Davis et al. 
2009; Choi and Showman 2011; Galperin et al. 2014) and 
Saturn (Del Genio and Barbara 2012) using ISS images 
from the Cassini spacecraft. These have enabled esti-
mates of the eddy-zonal flow kinetic energy transfers at 
the cloud tops which should be relatively free of some 
of the observational biases of the manual tracking work. 
Nevertheless, the results have broadly confirmed the ear-
lier estimates for Jupiter, with an overall conversion rate 
of around  10−4 W kg−1 at latitudes up to 50° N and S. For 

Saturn, estimates seem closer to around half of this value 
(Del Genio and Barbara 2012). The question remains, 
however, as to how deep this conversion might extend 
into the abyssal layers on both planets, and hence what 
is the overall thermodynamic efficiency of the conversion 
of thermal to zonally averaged mechanical energy.

Resolution of this question (and the correspond-
ing question as to the rate of production of KE from 
thermally generated potential energy), however, would 
require global measurements of velocity and tempera-
ture structure that extend much deeper into both atmos-
pheres than has been feasible so far. However, it seems 
clear that at least the extra-tropical zonal jets on Jupiter 
and Saturn owe their origin largely to the nonlinear recti-
fication of momentum transfer by eddies. But this raises 
other related questions such as:

• Do eddies of all scales and locations act in this way to 
drive zonal flows?

• What is the primary source of the eddies found at the 
cloud tops?

• What factors set the dominant scales of the zonal 
jets?

• More generally, how do turbulent cascades of energy 
and enstrophy operate in gas giant atmospheres?

KE spectra
An important first step in addressing the first of these 
questions is to determine the kinetic energy spectrum 
of motions in the atmospheres of Jupiter and Saturn. 
A number of attempts to estimate spectra for Jupiter’s 
atmosphere have been made in the past (e.g. Mitchell 
1982; Choi and Showman 2011), though most of them 
have focused mainly on estimating these only in the zonal 
direction. These have provided hints that Jupiter’s atmos-
phere might exhibit evidence for KE spectra resembling 
the classical Kolmogorov k−5/3 spectrum over a certain 
range of scales, prompting comparisons with expecta-
tions from classical theories for 3D or 2D turbulence. 
However, it is clear from even a superficial inspection 
of images of Jupiter that the motions in the atmosphere 
are highly anisotropic with quite different structures 
in the zonal and meridional directions. A proper analy-
sis should therefore include a consideration of both the 
zonal and meridional directions, for which the natural 
decomposition uses the set of spherical harmonics (Choi 
and Showman 2011; Galperin et al. 2014).

Figure  1 shows an example of the KE spectrum of 
Jupiter’s atmosphere, derived from automated tracking 
measurements of cloud motions in Cassini images dur-
ing the fly-by in December 2000 by Galperin et al. (2014) 
between latitudes ± 50o, in which the KE was projected 
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onto spherical harmonics (see Appendix A of Galperin 
et  al. 2014 for detailed analysis of resolution and meas-
urement uncertainties). This shows KE decomposed into 
the zonal mean component (for zonal wavenumber m =0, 
shown with a thin line) and the other (m ≠0) components 
(thick line). Clear differences are seen between the zonal 
and residual spectra, with the zonal spectrum roughly 
following an n−5 trend for n >20 and somewhat flatter 
(nearer n−5/3) at larger scales. The residual spectrum, 
however, is quite different, being almost flat for n <50 and 
then steepening towards a form close to the Kolmogorov 
slope n−5/3.

This spectrum shows few features in common with 
that of either an idealised 3D or 2D turbulent fluid. For 
the latter case, one would expect to see an isotropic spec-
trum with two segments (e.g. Davidson 2015), one with 
the Kolmogorov form n−5/3 for n < nI (where nI represents 
the scale at which KE is injected, forcing the flow), where 
the spectrum is dominated by an upscale (spectrally 
local) cascade of kinetic energy, and the other with a 
slope of n−3 for n > nI, dominated by the downscale trans-
fer of enstrophy (relative or potential). In Jupiter’s case, 
the spectrum is clearly anisotropic, at least at large scales, 
but for which a Kolmogorov-like segment is only found 
at small scales in the isotropic component of the resid-
ual (eddy) spectrum ER (and arguably at large scales in 
the zonal spectrum EZ). At large scales, the KE is heavily 
dominated by the zonal mean jet circulation, with more 
than 90% of the total kinetic energy residing in the zonal 
jets, at least at the cloud tops (Galperin et al. 2014).

The steep n−5 character of the zonal spectrum led 
Sukoriansky et  al. (2002) to suggest the relevance of 
the zonostrophic paradigm for geostrophic turbulence, 
forced at a relatively small scale and dissipated across a 
range of scales. This represents a generalisation of the 
classical Kolmogorov–Batchelor–Kraichnan theory to 
take account of the effects of spherical planetary curva-
ture and the consequent poleward gradients of planetary 
vorticity and dominance of dispersive Rossby waves at 
large scales (cf. Rhines 1975). The consequences for the 
expected KE spectrum (at least for a predominantly baro-
tropic flow) lead to an anisotropic spectrum with zonal 
and residual components of the spectrum of the form:

where CK and CZ are dimensionless constants (O(1) in 
each case), R is the planetary radius and ε is the upscale 
kinetic energy transfer rate. The total wavenumber nβ is 
the so-called anisotropy wavenumber, defined in a spher-
ical domain by

such that the spectrum is anisotropic for n < nβ and the 
two spectra cross over at n = nβ. This assumes that the 
turbulent flow is forced at an even smaller scale nf for 
which nf> nβ.

The zonal spectrum EZ for both Jupiter and Saturn 
appear to fit the zonostrophic form in Eq.  (2) above in 
both slope and amplitude, given a value for CZ ≈ 0.5 (e.g. 
Sukoriansky et al. 2002; Galperin et al. 2014). For ER on 
Jupiter, taking CK to be approximated by the Kolmogo-
rov–Kraichnan constant CK ≈ 6 , the observed spec-
trum for n > nβ ~ 57 suggests an estimate for |ε| of around 
 10−5 m2 s−3 (Galperin et al. 2014). However, this method 
of estimating ε does not distinguish between upscale or 
downscale transfers, leaving open the interpretation of 
the spectrum as zonostrophic in the sense defined by 
Sukoriansky et al. (2002) and subsequent work.

Spectral transfers and structure functions
To determine the direction as well as the magnitude of 
the transfer of energy or enstrophy (squared relative 
vorticity ½ ζ2) between different scales within the spec-
trum, it is necessary to consider higher order covariances 
of velocities than the quadratic product for the energy 

(1)ER = CKε
2/3

(n

R

)−5/3

,

(2)EZ = CZ

(

Ω

R

)2
(n

R

)−5

for
(

n < nβ
)

,

(3)nβ

R
=

[

Ω3

R3ε

]1/5

,

Fig. 1 Kinetic energy spectrum of Jupiter’s cloud layer (in units of 
Ω2R2), obtained by Galperin et al. (2014) from Cassini images. Spectra 
are projected onto spherical harmonics (with total wavenumber 
index n) and decomposed into the zonal mean flow EZ(n) (1, thin 
line) and residual KE ER(n) (2, thick line), such that total energy 
ET(n) = EZ(n) + ER(n). The analysis used the CB2 filter images with a 
native resolution of 0.05°  pixel−1 and a correlation box size of 0.95°, 
corresponding to a spectral resolution limit of around 1° or n ≈ 200
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spectrum itself. This is commonly analysed within the 
spectral framework described e.g. by Frisch (1995) or 
Burgess et al. (2013), for which

where εn represents the cumulative energy contained in 
scales larger than wavenumber n, ν is the kinematic vis-
cosity and Ωn is the cumulative enstrophy over wave-
numbers ≤ n, so the first term on the right hand side of 
(4) represents viscous dissipation, and Fn represents the 
forcing of kinetic energy at wavenumbers ≤ n. The term 
Πn represents the flux of energy between wavenum-
bers through wavenumber n, due to turbulent interac-
tions between different scales. The sign of Πn is such 
that Πn > 0 implies a direct energy flux towards smaller 
scales and Πn < 0 implies an inverse transfer towards 
larger scales. Πn is computed (for the rotational, non-
divergent component of the flow) from the nonlin-
ear tendency for enstrophy (i.e. the squared vorticity, 
1/2ζm∗

n ζmn  , where ζmn  represents the (m, n) component 
of the vertical component of relative vorticity), as repre-
sented for flows decomposed into spherical harmonics, 
Ym
n = Pn(cos θ)e

imϕ (where m is the zonal wavenumber 
index and n the total wavenumber index), defined by

where ()* denotes the complex conjugate. This represents 
the rate of change of enstrophy with total wavenumber 
n due to quadratic nonlinear interactions with other 
wavenumber components with zonal index m. The cor-
responding spectral tendency for kinetic energy, In, can 
be obtained from the relationship

and the (isotropic) spectral fluxes of energy ( Πn ) and 
enstrophy ( Hn ) are then obtained from

Similar tendencies and fluxes for the divergent, irrota-
tional components of the flow can also be obtained via 
the tendency of the squared horizontal divergence, also 
decomposed into spherical harmonics.

(4)
∂En

∂t
+Πn = −2υΩn + Fn,

(5)Jn = −
1

4

n
∑

m=−n

ζm∗
n (u.∇ζ )mn + ζmn (u.∇ζ )m∗

n ,

(6)In =
a2

n(n+ 1)
Jn,

(7a)Hn+1 = −

n
∑

ℓ=0

Jℓ;

(7b)Πn+1 = −

n
∑

ℓ=0

Iℓ.

Profiles of the spectral fluxes of KE and enstrophy in 
Jupiter’s cloud tops were obtained recently by Young 
and Read (2017) from the same two-dimensional, hori-
zontal wind vector fields derived from tracking cloud 
features by Galperin et  al. (2014) as mentioned above. 
Some of the results are illustrated in Fig.  2. Figure  2a 
shows the profile of the spectral enstrophy flux, indi-
cating a positive (forward) cascade at almost all scales 
down to the resolution of the measurements (around 
0.5° in latitude and longitude) with no evidence of an 
inertial range (i.e. no plateau in Hn).

The total kinetic energy transfer is shown in Fig.  2b 
and indicates a much more complicated picture. In 
particular, it shows a negative (upscale) flux between 
wavelengths of 2 × 103–2 × 104  km, with a hint of an 
inertial range plateau around  104  km. The flux of KE 
changes sign, however, at two scales, (i) at a wave-
length ~ 2–3 × 104 km where energy converges, and (ii) 
around a wavelength of 2 × 103 km, from which energy 
diverges, forming a direct forward cascade at smaller 
scales. Figure 2c shows the same computation including 
only eddy–eddy interactions (i.e. with the zonal mean 
components removed). This shows a qualitatively simi-
lar pattern, but with an amplitude 5–10 times smaller. 
This essentially shows that the strongest interactions 
are direct transfers between eddies and zonal flows, 
though the spectrally local, eddy–eddy cascade is of a 
similar form. The overall picture is consistent with the 
generation of KE as eddies of a scale close to 2000 km, 
and an accumulation of KE at scales around 20,000 km, 
close to the scales of the large-scale zonal bands.

The use of a spherical harmonic decomposition for 
this analysis assumes that this overall picture for trans-
fers of KE and enstrophy between scales applies across 
the whole planet, and neglects any local variations in 
the structure of the energy budget. Young and Read 
(2017) did, however, also verify the picture derived 
from spectral fluxes using 3rd order structure func-
tions, which derive the sense and magnitude of energy 
transfers between scales more directly. The longitudinal 
structure function, FL3(r) , is defined by

where δuL(r) = uL(x + |r|)− uL(x) , angle brackets 
denote an average over all x and uL is the velocity com-
ponent lying along the path joining x and x + r. Positive 
values of FL3(r) indicate a positive correlation between 
separating particle paths and kinetic energy, and hence a 
tendency to transfer KE to larger scales (e.g. Frisch 1995; 
Davidson 2015). For a classical Kolmogorov–Batchelor–
Kraichnan (KBK) turbulent spectrum with a k−5/3 slope, 
the third-order structure function is expected to scale 
as FL3(r) ∼ Πr (e.g. Davidson 2015). Young and Read’s 

(8)FL3(r) = δu3L,
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(2017) results show a change in sign of FL3(r) at values of 
r around 2000–3000 km for both local and global velocity 
maps towards a nearly linear segment with r, confirming 
the suggested reversal of the KE cascade towards a direct, 
forward cascade at scales smaller than 2000–3000 km.

The nature of the forward cascade at scales < 2000 km 
is not well characterised. Such a direct cascade (with a 
spectrum roughly consistent with the KBK slope of − 5/3; 
see “KE spectra” section above) is not consistent with the 
classical paradigm of 2D or QG turbulence (e.g. Charney 
1971; Salmon 1980; Davidson 2015), although a some-
what similar dual cascade pattern is also observed in the 
Earth’s oceans (e.g. Scott and Wang 2005). Internal grav-
ity waves may play an important role if the atmosphere is 
stably stratified in this region, but observations are insuf-
ficient at present to characterise this segment of the cas-
cade with any confidence.

The significance of this injection scale is important 
with respect to the dominant mechanism that gener-
ates the eddies that energise the turbulent cascades. At 
around 2000–3000  km, this is highly suggestive of the 
first baroclinic Rossby deformation radius Ld . This has 
been estimated in several previous studies of Jupiter (e.g. 
Achterberg and Ingersoll 1989; Ingersoll and Kanamori 
1995; Ingersoll et al. 2004; Vasavada and Showman 2005; 
Read et al. 2006) to lie around Ld ∼ 2000 km (to within 
a factor ~ 2), consistent with the scale of the KE source 
found by Young and Read (2017).

Based on Galileo and Cassini observations of Jupiter, 
Ingersoll et al. (2000) and Gierasch et al. (2000) have sug-
gested the potential significance of moist convection as 
an energetically important process for generating eddies 
in Jupiter’s atmosphere, estimating that up to 50% of Jupi-
ter’s internal heat might be transported upwards through 
moist convective thunderstorms in the troposphere. 

Fig. 2 Profiles of spectral fluxes of enstrophy (squared vorticity) and kinetic energy with total horizontal wavenumber and wavelength at Jupiter’s 
cloud tops, as derived from Cassini ISS images of Jupiter during the 2000 fly-by by Young and Read (2017). a Enstrophy flux, b total (rotational) 
kinetic energy flux and c kinetic energy flux due only to eddy–eddy interactions. The direction of energy or enstrophy transfer is indicated by the 
arrows. G14g and G14s refer, respectively, to the global mosaic and single image cloud tracking analyses of Galperin et al. (2014) while C11 refers to 
the global mosaic analysis of the same images by Choi and Showman (2011)
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However, the typical scale of Jovian thunderstorms is 
quite a lot smaller than Ld , even when aggregated into 
storm clusters, suggesting that this may not be the prin-
cipal source of KE in the large-scale turbulent KE cas-
cades measured at Jupiter’s cloud tops. More likely would 
be the possibility that a form of baroclinic instability is 
responsible for the generation of eddies on scales com-
parable with Ld (e.g. Vallis 2017), in a similar fashion to 
the Earth’s oceans (e.g. Scott and Wang 2005), although 
the style of instability may well be rather different from 
that found more familiarly in terrestrial atmospheres. 
On Earth, for example, baroclinic instability tends to be 
strongly enhanced through horizontal thermal gradients 
at the lower boundary. Such a boundary does not exist on 
the gas giant planets, however, at least within the upper 
weather layers. But from the viewpoint of the potential 
vorticity structure, the tropopause may act as a weak 
interface, allowing the development of baroclinically 
unstable modes that are enhanced in amplitude near the 

top of the tropopause through thermal gradients along 
the tropopause itself (e.g. Conrath et al. 1981; Kaspi and 
Flierl 2007; Read et al. 2020). Many uncertainties remain, 
however, because the vertical structures of the atmos-
pheres of Jupiter and Saturn are relatively unexplored in 
observations.

Potential vorticity structure and jet stability
The vorticity structure of the zonal jets on Jupiter 
and Saturn is of particular interest in relation to their 
likely stability to breaking up into meanders and/or 
vortex-like eddies. As we discuss below, it may also 
hold clues as to why the zonal spectrum, Ez(n), adopts 
the steep form ~ n−5. A long-standing conundrum has 
been the observation that the latitudinal profile of ū

(

y
)

 
(where y is the northward coordinate) appears to vio-
late the well known Rayleigh–Kuo necessary (though 
not sufficient) condition for instability, namely, that 
β − ∂2ū/∂y2 = ∂ζa/∂y changes sign across the domain, 
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Fig. 3 Observed structure in a zonal velocity, b northward gradient of relative vorticity and c quasi-geostrophic potential vorticity of Jupiter’s 
cloud-level zonal jets, as derived by Read et al. (2006) from Cassini cloud tracking measurements (Porco et al. 2003) and infrared thermal retrievals 
from the Cassini Composite Infrared Spectrometer (CIRS)
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where β is the northward planetary vorticity gradi-
ent due to spherical planetary curvature and ζa is the 
absolute vorticity. This is clearly seen in Fig. 3b, which 
shows the latitudinal profiles of northward vorticity 
gradient (solid lines) and β = 2Ω cos θ/R (dashed line). 
The fact that the solid line crosses the dashed one dem-
onstrates that the Rayleigh–Kuo criterion is violated, 
principally in association with westward zonal jets.

This tendency for many zonal jets on Jupiter and Saturn 
was noted in analyses of the early Voyager observations 
(e.g. Ingersoll et  al. 1981), though was explained at the 
time as indicating that aspects of the vertical structure 
of the flow (which could not be measured directly) might 
ameliorate the change of sign of ∂ζa/∂y (see also Scott 
and Dunkerton 2017). A more complete stability meas-
ure is related to the potential vorticity structure, based 
on quasi-geostrophic (QG) theory, for which the instabil-
ity criterion equivalent to the Rayleigh–Kuo condition is 
the Charney–Stern–Pedlosky (CSP) criterion (e.g. Vallis 
2017), namely, that ∂Q/∂y should change sign within the 
domain, where

is the QG potential vorticity, ug is the geostrophic veloc-
ity, ψg the geostrophic stream function and z is the log-
pressure pseudo-height coordinate if Q is computed on 
pressure surfaces. The corresponding profile of Q for 
Jupiter was derived from a combination of cloud tracked 
winds and retrieved temperatures from Cassini obser-
vations by Read et  al. (2006) and is shown in Fig.  3(c). 
Despite the addition now of realistic (albeit low verti-
cal resolution) thermal information to include the sec-
ond “stretching” term on the RHS of Eq. (9), it is evident 
that ∂Q/∂y also changes sign with latitude, suggesting 
that even the CSP instability criterion is also satisfied. 
An important caveat for both these criteria is that they 
are necessary conditions, but not sufficient to guaran-
tee instability (e.g. see Vallis 2017). However, the fact 
remains that the zonal velocity on both gas giant planets 
robustly satisfies both criteria in repeated measurements.

An alternative interpretation was offered by Dowling 
(1993), Stamp and Dowling (1993) and Dowling (1993), 
who noted that a stronger (nonlinear) stability criterion 
was provided in the so-called second stability theorem of 
Arnol’d (Arnol’d 1966)—hereafter “Arnol’d II”. Although 
still only a necessary condition, it does allow for the pos-
sibility of flows exhibiting a change of sign of ∂Q/∂y while 
remaining marginally stable to non-zonal perturbations. 
For this situation, the condition for stability reduces to

(9)Q = k .∇ × ug + f0
∂

∂z

[

1

N 2(z)

∂ψg

∂z

]

+ βy

where α is a constant representing a shift in the frame of 
reference and ∂Q/∂y can take either sign. Marginal stabil-
ity corresponds to the equality condition in Eq. (10).

Based on some earlier diagnostic calculations of the 
vorticity structure of Jupiter’s winds (assuming an anal-
ogy with rotating shallow water theory), Dowling (1993), 
Stamp and Dowling (1993) and Dowling (1993) sug-
gested that both Jupiter’s and Saturn’s weather lay-
ers were close to marginally stable conditions, despite 
violating the Rayleigh–Kuo condition for stability. The 
essence of this approach relates to the ability of Rossby 
waves propagating within a local region with a given 
value of ū and ∂Q/∂y to phase lock with a parallel wave 
train with a different value of ū and ∂Q/∂y . Marginal 
instability implies just one value of α that would allow 
the gravest (deepest) Rossby wave modes to phase-lock, 
hence implying a unique reference frame in which insta-
bility (through interaction between pairs of Rossby wave 
trains) is possible.

A unified interpretation of these two stability theorems 
has recently been developed by Dowling (2014, 2020) 
through the introduction of a dimensionless parameter, 
Ma, analogous to the Mach number in supersonic flows. 
Ma is defined with respect to the phase speed of the grav-
est Rossby waves that can propagate within a shear flow 
and takes the general form

where κ21 is the first baroclinic eigenvalue connecting 
the (eddy component of the) QG potential vorticity with 
the stream function and tends to L−2

d  for small Burger 
number (= [Ld/R]2, where R is the planetary radius). 
For finite Ld in the long wave limit, the phase speed of 
Rossby waves c → −

(

∂Q/∂y
)

L2d , so that “Ma” takes the 
form of a (signed) Mach-type number, −(u− α)/c , since 
(u− α)/[∂Q/∂y] → −dψG/dQ . Thus, Eq.  (10) becomes 
equivalent to requiring Ma > 1 for stability while the CSP 
criterion implies stability for Ma  < 0. Instability is there-
fore expected under either criteria for  Ma−1 > + 1 with 
marginal stability/instability corresponding to Ma = + 1 
(see Dowling (2019, 2020) for more details).

This unique characteristic of a marginally unstable flow 
was later exploited by Read et al. (2009a, b) to determine 
the implied reference frame for marginal instability on 
both Jupiter and Saturn, based on local computations 
of the zonal mean Q and ū . The results showed that the 
marginally unstable reference frame on Jupiter was indis-
tinguishable from the System III frame, determined from 
the rotation of its magnetic field. For Saturn, however, 

(10)
(

ū− α

∂Q/∂y

)

≥ L2d ,

(11)Ma = −κ21
dψG

dQ
,
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the results indicated a significantly different frame of ref-
erence that rotated several minutes faster than the Sys-
tem III frame determined from Voyager observations 
(period = 10 h 39 min 24 ± 7 s; Desch and Kaiser 1981). 
With a value of 10 h 34 min 13 ± 20 s, it implies a shift 
in apparent zonal velocity on Saturn’s equator of around 
85  m  s−1, significantly altering the shape of its zonal 
velocity profile towards a more symmetrical distribu-
tion of ū between eastward and westward jets, more like 
Jupiter.

This result was controversial at the time, because Cas-
sini measurements of Saturn’s magnetic field obtained a 
rather different rotation period to Voyager of 10  h 47  m 
6 s. Moreover, the magnetic rotation period measured by 
Cassini continued to vary throughout the Cassini mission 
(e.g. Ye et al. 2016), strongly indicating that neither these 
measurements nor Voyager’s were accurately sensing 
Saturn’s “true” internal rotation period. Coincidentally, 
however, another method of estimating Saturn’s internal 
rotation rate was also published in 2007 (Anderson and 
Schubert 2007), using measurements of its oblateness 
and gravity field, which also inferred an even faster rota-
tion period of 10 h 32 min 35 ± 13 s. These results have 
received some further support from more recent meas-
urements of Saturn’s gravity field and oblateness (Helled 
et  al. 2015) and measurements of perturbations in Sat-
urn’s rings (Mankovitch et al. 2019), which, respectively, 
suggest internal rotation periods of 10 h 32 min 45 ± 46 s 
and 10 h 33 min 38 s, though with the latter having fairly 
large uncertainties ~ ±2 min. Nevertheless, it seems clear 
that, assuming Saturn has a well defined internal rota-
tion period, it must be significantly faster than the Sys-
tem III frame determined by either Voyager or Cassini 
radio observations. Moreover, the influence of this inter-
nal rotation seems to be felt in the dynamical structure 
of the flow, even in the weather layers of both Jupiter and 
Saturn.

One further implication of the gas giant weather layers 
being close to a marginally unstable state relates to the 
n−5 form of the zonal KE spectrum. Planetary rotation 
allows for the existence of inflection points in the latitu-
dinal profile of ū while remaining marginally stable under 
the Rayleigh-Kuo criterion. This may be consistent with 
a zonal KE spectrum with an index of at least − 4 (e.g. 
Huang et al. 2001), although this makes a number of sim-
plifying assumptions (notably of linearity and a uniform 
value of β). Huang et al. (2001) argue that the n−5 form of 
the zonal KE spectrum could represent a saturated flow, 
in which nonlinearities limit the amplitude of both ū and 
its vorticity. The observations, therefore, that both Jupi-
ter and Saturn exhibit an n−5 spectrum in their zonal KE 
of the form in Eq.  (2) appears to be consistent with the 

notion that their zonal mean flow structure is defined by 
a marginally unstable, saturated state.

Global circulation models of gas giant weather 
layers
One of the most stringent tests of our understanding of a 
complex system such as Jupiter’s or Saturn’s weather layer 
is the extent to which we can reproduce observed struc-
tures and behaviour, and even predict features not yet 
observed, in a model based on fundamental principles 
and assumptions, i.e. without overt empirical “tuning”. In 
this regard, the task of developing such models for Jupiter 
and Saturn is still at a fairly primitive stage, although a 
rich hierarchy of dynamical models of varying sophistica-
tion and complexity have appeared in the past ~ 40 years.

Idealised models
The earliest numerical circulation models made minimal 
assumptions concerning the vertical structure of Jupi-
ter’s atmosphere, treating it essentially as a single, shal-
low fluid layer on the surface of a sphere (Williams 1978, 
1979, 1985; Williams and Yamagata 1984; Williams and 
Wilson 1988), based on the rotating shallow water equa-
tions. Later work led to some account being taken of the 
likely presence of a deep abyssal layer (assumed to be 
relatively dynamically passive, though potentially with 
deep zonal jets) underlying a shallow (but dynamically 
active) weather layer, forming effectively a 1½ layer (or 
“1¾ layer”; e.g. Flierl et  al. 2019, Dowling 2020) model 
(e.g. Ingersoll and Cuong 1981; Dowling and Ingersoll 
1988, 1989). This class of model was able to capture cer-
tain features and phenomena that were consistent with 
some observations, such as the formation of patterns of 
parallel jet streams and the short-term behaviour of some 
waves and oval vortices, though they were strongly ideal-
ised and lacked a representation of a number of realistic 
physical processes to sustain or dissipate circulation fea-
tures or their vertical structure. Nevertheless, this class 
of model has continued to be employed in a number of 
more recent theoretical studies intended to investigate 
particular hypotheses for the origin and stability of vari-
ous features (e.g. Li et  al. 2006; Showman 2007; O’Neill 
et al. 2015; Thomson and McIntyre 2016, Thomson 2020).

Intermediate complexity models
Because of their computational expense, as well as a lack 
of detailed observations of the vertical structure of gas 
giant atmospheres, researchers have been relatively slow 
to apply full scale 3D numerical models, based on the 
meteorological Primitive Equations, to this region of gas 
giant atmospheres. The earliest attempts to apply such 3D 
models were still quite heavily idealised (Williams 1997, 
2002, 2003) though did seek to impose plausible patterns 
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of diabatic forcing and vertical structure to a shallow 
weather layer. Results did confirm the role of baroclini-
cally unstable eddies in generating patterns of multiple, 
upper surface-enhanced zonal jets which tended to drift 
in latitude when heating was confined to upper levels.

Around the same time, Dowling et al. (1998) published 
the first results from their Explicit Planetary Isentropic 
Coordinate (EPIC) model, formulated (as the acronym 
would suggest) using isentropic coordinates in the ver-
tical direction. This was initially applied to a number of 
idealised problems, mostly in regional rather than global 
domains, to study the dynamics of artificially initialised 
vortices resembling Neptune’s Great Dark Spot (LeB-
eau and Dowling 1998) though has more recently been 
applied to other features such as Jupiter’s equatorial hot 
spots (Showman and Dowling 2000) and White Ovals 
(Morales-Juberías et al. 2003), Saturn’s ribbon waves and 
polar hexagon (Morales-Juberías et  al. 2011) and other 
giant planet vortices (e.g. Brueshaber et al. 2019).

Other weather layer models have appeared which use 
a well established dynamical core to solve the dynamical 
equations but also have used idealised thermal relaxa-
tion or mechanical forcing to drive circulations, either 
in a limited area domain (e.g. Yamazaki et  al. 2004; 
Zuchowski et al. 2009a, based on a dynamical core from 
the UK Met Office) or globally (e.g. Lian and Showman 
2008; O’Gorman and Schneider 2008; Medvedev et  al. 
2013, Thomson and Vallis 2019). These models were able 
to capture certain features relevant to gas giant meteor-
ology, such as the interaction of waves and zonal flows, 
though were more diagnostic than predictive. Lian and 
Showman (2008), for example, showed that forcing 
localised within a shallow weather layer could nonethe-
less lead to a much deeper response e.g. in the pattern of 
zonal winds. Lian and Showman (2010) also introduced 
a very simple parameterisation to represent the effects 
of moist convective storms as a random pattern of mass 
sources and sinks, suggesting the feasibility of driving the 
zonally banded circulation through nonlinear interac-
tions between moist convection and zonal jets in a rap-
idly rotating, stratified spherical atmosphere.

Thomson and Vallis (2019) describe versions of the 
Isca model, based on the GFDL FMS spectral dynamical 
core, set up in either highly simplified 1½ level or inter-
mediate-complexity configurations intended to emulate 
Jupiter-like conditions. Like the EPIC model, Isca can 
be configured in an “n + ¾ layer” form with prescribed 
deep zonal jets in an abyssal layer at the base of the 
model domain, that have allowed comparison of simpli-
fied 1¾ level model results (e.g. Thomson and McIntyre 
2016; Thomson 2020) with simulations with more realis-
tic vertical structure (Thomson and Vallis 2019). But few 
attempts have been made in any of these studies so far 

accurately to match the conditions and forcing processes 
in the troposphere or stratosphere of Jupiter or Saturn.

More realistic weather layer models
Most recently, several groups have attempted to develop 
global circulation models that include a more realistic 
set of parameterisations that represent forcing and dis-
sipation processes that (arguably!) more closely resemble 
those found in the upper tropospheres and stratospheres 
of Jupiter and/or Saturn, and even in some cases includ-
ing the ice giant planets (Uranus and Neptune).

The EPIC model, referenced above in the previous sec-
tion, is a notable example which has also been extended 
recently to use hybrid isentropic-pressure coordinates 
(Dowling et  al. 2006) and more realistic parameterisa-
tions e.g. for cloud microphysics (Palotai 2008). However, 
most recent studies using EPIC to date have not imple-
mented realistic radiative forcing in the upper tropo-
sphere or stratosphere.

Lian and Showman (2010) used the MITgcm dynami-
cal core, forced by a combination of thermal relaxa-
tion towards a temperature structure inspired by the 
observed structures of the gas and ice giant atmospheres, 
trending towards a neutrally stable deep interior (down 
to a depth ~ 100  bar), with latent heat release associ-
ated with the condensation of a water vapour tracer. 
The results demonstrated the spontaneous formation of 
multiple, extra-tropical, eddy-driven zonal jets, together 
with reasonably strong equatorial jets that reproduced 
the observed directions for conditions corresponding 
to either Jupiter, Saturn or Neptune. The equilibrated 
flow also exhibited a pattern of zonal jets that violated 
the Charney–Stern stability criterion but in most cases, 
remained close to a marginally unstable  Ma−1 ≈ 1 state 
with respect to Arnol’d’s second stability theorem, much 
as discussed in Sect. "Potential vorticity structure and jet 
stability" above.

In a similar vein, Schneider and Liu (2009) used the 
pseudo-spectral dynamical core from the Flexible Mod-
eling System (FMS) of Princeton’s GFDL to obtain simu-
lations of all of the gas and ice giant weather layers (down 
to a pressure of ~ 3  bar). In contrast to Lian and Show-
man (2010), however, they used a semi-gray radiative 
transfer parameterisation with insolation of the observed 
magnitude (nominally for all four gas and ice giants but 
for a planet with a fixed Earth-like obliquity) and realistic 
upward heat fluxes from the interior but no latent heating 
or moist convection. A pattern of surface drag was also 
used to emulate magnetohydrodynamic drag at depth to 
close the energy budget. This model was also able to cap-
ture patterns of extra-tropical zonal jets on reasonably 
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realistic spatial scales and amplitudes for each planet, 
together with equatorial jets of the appropriate sign.

They also computed the exchange of KE between 
different scales, using the same spectral flux diag-
nostic as discussed above in the “Spectral transfers 
and structure functions” section. This is illustrated in 
Fig. 4a, which is taken from Schneider and Liu (2009) 
and clearly shows a negative (upscale) KE flux between 
wavenumber indices 10 < n < 100 turning into a posi-
tive (downscale) flux for n ≥120, much as found in the 
observations of Young and Read (2017). This calcula-
tion also shows most of the KE spectral flux residing 
in the eddy-zonal flow interactions, with only around 
20% of the flux in the eddy–eddy components and no 
obvious evidence of a plateau in spectral flux indicative 
of an inertial range. Subsequent work (Liu and Sch-
neider 2010, 2015) investigated mechanisms for zonal 
jet formation in their simulations, highlighting the 
roles of baroclinic eddies in driving the extra-tropical 
zonal jets and the relative magnitudes of the interior 
and solar thermal fluxes in each case in determining 
the predominant direction (though not necessarily the 
magnitude) of the equatorial jet, and investigating the 
scaling of jet strength with model parameters.

Most recently, Spiga et al. (2020) and Cabanes et al. 
(2020) have developed a new model, based on a new 
dynamical core on an icosahedral grid (DYNAMICO), 
that includes a more realistic multi-band (correlated-
k) radiative transfer parameterisation which computes 
heating rates specific to the composition of Saturn’s 
atmosphere (Guerlet et al. 2014). The model also takes 
account of a realistic heat flux from the deep inte-
rior, together with parameterisations for turbulent 

dissipation and dry convective adjustment, though 
without moist convection or latent heating. Like 
the model of Schneider and Liu (2009), the domain 
only extends to 3  bar pressure with a similar pattern 
of “MHD drag”. Nevertheless, the model was able to 
capture many features of Saturn’s observed thermal 
structure and meteorology, including its extra-tropical 
multiple zonal jets and polar vortices. The equatorial 
jet obtained, however, was not particularly realistic 
in its magnitude though was at least in the observed 
direction.

The Jason weather layer model
Young et  al. (2019a, b) have recently developed a new 
GCM for Jupiter’s weather layer, designated Jason, which 
attempts to include a reasonably full range of moderately 
realistic parameterisations as well as high spatial reso-
lution in its dynamical core. Like the model of Lian and 
Showman (2008), the dynamical core is based on MIT-
gcm (in its latitude–longitude grid configuration), but 
follows Schneider and Liu (2009) in utilising a semi-gray 
radiative transfer scheme that is calibrated to reproduce 
approximately the observed vertical distribution of solar 
and infrared radiative fluxes. A uniform internal heat flux 
is input at the bottom of the domain (at ~ 18 bar) and the 
model includes a uniform, weak linear drag at the bot-
tom boundary to emulate “MHD drag” (including in the 
tropics). The model can also include the effects of latent 
heat release by condensation of a water vapour tracer 
and parameterisations of both dry and moist convection 
(using the heat engine parameterisation of Zuchowski 
et  al. 2009b). As in the earlier work of Zuchowski et  al. 
(2009c), tracers can be advected for water,  NH3 and 
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 NH4SH and their condensable cloud aerosols, allowing 
the model to develop its own layered cloud structures 
which can then be transported by the dynamics and form 
features that can resemble observed cloud structures. An 
example of the modelled distribution of water clouds is 
illustrated in Fig. 5, which shows a snapshot of water ice 
column density across the planet. Clouds clearly organ-
ise into zonal bands with sharp edges, rendering visible 
small-scale travelling waves propagating along zonal jets.

Like the other realistic models mentioned above, Jason 
exhibits the spontaneous formation of a pattern of zonal 
jets, whose scale and magnitude depends somewhat on 
which forcing processes and parameterisations are active, 
as well as on model resolution (e.g. see Fig. 6). Most runs 
so far have been carried out, as in the other models in 
the “More realistic weather layer models” section, using 
a resolution of approximately 0.7° × 0.7° in latitude and 
longitude. This resolution, or higher, is necessary when 
simulating Jupiter’s meteorology in order to resolve ade-
quately the first baroclinic Rossby radius on Jupiter, Ld, 
which on Jupiter is around 1000–3000  km (Achterberg 
and Ingersoll 1989; Vasavada and Showman 2005; Read 
et al. 2006) and represents the dominant energy-contain-
ing scales for baroclinic instabilities on a planet like Jupi-
ter. To date, however, the Jason model has not imposed 
a pattern of deep zonal jets at the bottom of the model 
domain, although the pattern of eddy-driven zonal jets 
does seem to extend to the (fixed pressure) base of the 
model where it spontaneously develops a correspond-
ing geostrophically balanced topography in geopotential 
height. This captures some effects of deep zonal jets on 
the vorticity dynamics of the resolved flow in the model 
weather layer, though more passively than in some other 
models (such as Dowling and Ingersoll 1989; Thomson 
and Vallis 2019).

As evident in spectral KE flux calculations from the 
Jason simulations (e.g. see Fig. 4b and Young et al. 2020), 

Fig. 5 Visualisation of a snapshot of the field of water cloud ice column density from a simulation of the weather layer circulation of Jupiter at 
a horizontal resolution of 0.7° × 0.7° in latitude × longitude using the Jason model (Young et al. 2019b). This simulation does not include moist 
convection

Fig. 6 Zonal mean zonal velocity cross-section, averaged over the 
final 100 days of a run using the Jason Jupiter model with semi-gray 
radiative transfer and moist convection active (assuming 4× solar 
composition of  H2O). White contours indicate zonal velocities in 
excess of 30 m s−1 and the tropopause (where ∂T/∂p changes sign) is 
shown as a grey contour



Page 13 of 18Read et al. Geosci. Lett.            (2020) 7:10  

zonal jets arise through predominantly upscale nonlinear 
transfers of KE from eddies into zonal flows. In the Jason 
simulations, this takes place between horizontal wave-
lengths of 20,000–30,000  km (comparable to the latitu-
dinal spacing of the zonal jets and the so-called Rhines 
scale π(2U/β)1/2; Hide 1969; Rhines 1975) and ~ 2000–
3000  km (comparable to Ld). At scales smaller than 
2000 km, the KE transfer is direct, towards small scales, 
much as found in the observations and in the simulations 
of Schneider and Liu (2009), consistent with a source of 
KE at scales around 3000 km.

The origin of this KE is indicated from preliminary 
calculations of the spectral conversion rate of potential 
energy (PE) to KE, CE

n  , which represents the spectrally 
decomposed covariance of vertical velocity and density 
(Young et al. 2020). Preliminary results suggest a signifi-
cant conversion of APE to KE at scales around 3000 km. 
If confirmed, this would be consistent with the inter-
pretation that baroclinic eddies on scales comparable 
with Ld are dominant, not only in generating large-scale 
structures and zonal jets through upscale nonlinear inter-
actions, but also in energising the KE cascade by conver-
sion from potential energy at small scales in a scenario 
reminiscent of the QG baroclinic turbulence paradigm of 
Salmon (1980). Unlike this classical paradigm, however, 
the inverse KE cascade to large scales is also accompa-
nied by a forward cascade of KE to even smaller scales. 
Such a dual KE cascade is also found, for example, in the 
Earth’s ocean circulation (e.g. Scott and Wang 2005). The 
nature of this forward cascade on scales smaller than the 
deformation radius is still not well understood, either for 
Jupiter or the Earth’s oceans, but seems likely to involve 
three-dimensional processes (such as internal gravity 

waves) related to the stratification. Such processes should 
be explored in more detail in future modelling work and 
observations.

Although baroclinic instability may dominate the 
dynamics, at least at extra-tropical latitudes, moist con-
vection is also active in runs that include the moist con-
vection parameterisation. The distribution of moist 
convective events, as captured by the parameterisation, 
is far from uniform, however. Figure  7 shows an exam-
ple from a Jason simulation in which the Zuchowski 
et al. (2009b) parameterisation is active (Young and Read 
2020), which shows (a) the net heating/cooling rates due 
to moist convection as a function of latitude and height, 
and (b) the vertical distribution of moist convective 
adjustment during the run. This clearly demonstrates 
that the most frequent and intense moist convection 
takes place at high latitudes, with weak heating and cool-
ing close to the water condensation level, around 3–4 
bars in this case, and stronger warming at the detrain-
ment levels around 200–600  hPa. This distribution cor-
responds remarkably well to the observed distribution of 
lightning, as found recently by Brown et al. (2018) from 
Juno observations. This tendency to favour moist con-
vection at high latitudes may reflect the stabilising effect 
of absorbed solar radiation at low latitudes, which tends 
to suppress deep convection down to levels of a few bars 
(though not beneath this). One aspect of the observations 
that is not well captured in the Jason simulations, how-
ever, is the significant asymmetry between the northern 
and southern hemispheres on Jupiter, for which the north 
seems to have been much more active recently than the 
south. Recent Juno results have also noted a strong hemi-
spheric asymmetry between the northern and southern 

Fig. 7 Distribution of moist convection in a Jason simulation of Jupiter’s weather layer at a resolution of 0.7° × 0.7° in latitude × longitude (Young 
and Read 2020), showing (a) the net rate of change of humidity as a function of latitude and pressure, and (b) the fraction of convecting grid points 
as a function of pressure, showing the confinement of moist convection between ~ 4 bars and 200 hPa
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hemispheres (Moore et  al. 2018), which might suggest 
that the circulation at deep levels exerts an influence on 
the weather layer that should be allowed for, perhaps 
through a “¾-layer” extension, in future work.

The modelled transport and distribution of ammo-
nia vapour is another quantity that is represented in 
the Jason model (Young et  al. 2019b), and can be com-
pared with recent Juno MicroWave Radiometer (MWR) 
observations (Li et  al. 2017) and recent ground-based 
radio observations (de Pater et al. 2019). Figure 8 shows 
the distribution in latitude and height (pressure) of the 
 NH3 vapour mass mixing ratio 100–200  days after ini-
tialisation in a latitudinally uniform state. This simulation 
clearly captures a strong, ascending plume of ammo-
nia from the dense reservoir in thermochemical equi-
librium at depth, capped at around 500 hPa where  NH3 
vapour tends to condense into clouds. A similar pattern 
of strongly ascending  NH3 vapour was found by Li et al. 
(2017) in the Juno MWR observations, where a narrow 
(~ 5° wide) equatorial ammonia plume was found to 
rise up from a reservoir at p >20  bar, capped at around 
700  hPa. In the Jason simulations, however, the narrow 
 NH3 plume does not persist indefinitely, but tends to 
spread in latitude as the circulation evolves, equilibrat-
ing with a much more diffuse equatorial maximum in 
 NH3 MMR than observed. This almost certainly indicates 
that, although the model exhibits some realistic tenden-
cies in the organisation of the circulation, there are pro-
cesses missing (and as yet poorly understood) that either 
keep the equatorial  NH3 confined to a narrow ascending 
plume or deplete the upper tropospheric  NH3 concen-
tration at mid-latitudes (e.g. Guillot 2020). It will be of 
interest, however, to see if future observations (e.g. from 
further ground-based radio observations; cf de Pater 
et al. 2019) continue to confirm the persistence of Jupi-
ter’s compact equatorial  NH3 plume.

Discussion and conclusions
The results highlighted in this review paint an increas-
ingly clear picture of how the circulation of Jupiter’s and 
Saturn’s weather layers work, although many questions 
still remain unresolved.

Global circulation in weather layers
Thermodynamic forcing in these weather layers seems 
to be dominated mainly by a combination of large-scale 
differential solar heating down to pressures of a few bars 
and upwelling heat from the planetary interior, balanced 
by radiative cooling to space. The dynamical response, in 
the form of baroclinic instabilities and active but complex 
and anisotropic turbulent cascades of energy and enstro-
phy, leads to the generation of a pattern of eddy-driven 
zonal jets with forcing that is probably strongest in the 
upper troposphere. The response on large horizontal 
scales, however, seems to penetrate to much deeper lev-
els, as evident in the gravity harmonic results from Juno 
and Cassini (Kaspi et al. 2018; Galanti et al. 2019).

Somewhat remarkably, our most recent models suggest 
that moist convection, although energetically potentially 
significant (Gierasch et al. 2000), does not seem to play a 
direct role in driving large-scale motions, at least at low-
mid latitudes. Young and Read (2020) find that parame-
terised moist convection acts to intensify the circulations 
produced mainly by solar and interior heating towards 
more realistic intensities but does not seem to result in 
any new phenomena, at least on global scales (although it 
may be more important on local or regional scales). This 
may, of course, be due to the limitations of the param-
eterisation schemes and limited spatial resolution in the 
simulations. But the disparity of scales between the typi-
cal sizes of individual moist convective storms and the 
inferred scale of energy injection in the observed tur-
bulent KE cascade (at least for Jupiter; Young and Read 
2017, but also likely for Saturn; see Cabanes et al. 2020) 
would seem to favour baroclinic eddies over convective 
storms as the principal energising features for large scale 
flows. However, it will be important in future to establish 
from observations whether a similar situation prevails on 
Saturn and the other giant planets.

The main response to such forcing in the weather layer 
is in the form of the dominant pattern of zonal jets, at 
least in the extra-tropics, the strength of which may be 
limited by a tendency for the jet flows to adjust to a state 
of marginal barotropic instability. Arnol’d’s 2nd stability 
criterion would seem to provide a significant constraint 
(Stamp and Dowling 1993) that has proved effective in 
pointing towards a particular reference frame in which 
marginal instability is satisfied for both Jupiter and Sat-
urn (Read et  al. 2009a, b). It will be of great interest in 
future work to explore whether this marginally unstable 

Fig. 8 A map in latitude and height (pressure) of the mass mixing 
ratio of  NH3 vapour obtained 100–200 days after tracers were injected 
into a Jason model simulation of Jupiter’s weather layer, without  H2O 
latent heating and moist convection (Young et al. 2019b)



Page 15 of 18Read et al. Geosci. Lett.            (2020) 7:10  

configuration also occurs on the ice giant planets, Uranus 
and Neptune, although observations of a sufficient qual-
ity to test this hypothesis may need to await a new mis-
sion to these remote planets.

Atmospheric models
The most recent generation of numerical weather 
layer models, using physically based parameterisa-
tions constrained by observations, would seem to offer 
some significant promise in capturing many, but by no 
means all, observed features of these atmospheres. The 
demands on model resources, however, are challeng-
ing, requiring quite high horizontal (< 1° × 1° in lati-
tude × longitude) and vertical resolution, deep domains 
(at least to 10–20  bar) and long integration times 
(> 200,000 simulated rotation periods) in order to reach 
thermal and dynamical equilibrium with realistic heat-
ing and cooling rates. Recent results, however, show 
such approaches to be rewarded by the reproduction of 
reasonably realistic patterns of extra-tropical zonal jets, 
cloud bands and certain aspects of meridional tracer 
transport.

Virtually all weather layer models published to date, 
however, seem to fail to reproduce a number of major 
features in observations, at least spontaneously. The 
large oval vortices on Jupiter and Saturn, such as the 
Great Red Spot and White Ovals on Jupiter, do not 
develop spontaneously in most of these model simula-
tions without a finite-amplitude initial perturbation, 
although a few models have proven able to develop an 
equilibrated GRS-like vortex from small amplitude per-
turbations of a different shape and scale; e.g. Dowling 
and Ingersoll (1989); see Fig.  17 and associated text). 
This raises some intriguing questions as to the physical 
origin of these features and might suggest either some 
missing physical processes in many models or inad-
equate spatial resolution. Deep-rooted hot spots might 
offer one possible explanation, given the appearance of 
isolated vortical structures in some deep convection 
models (e.g. see Heimpel et al. 2015). The formation of 
stable arrays of polar vortices or symmetric wave pat-
terns, such as Saturn’s North Polar Hexagon, have also 
yet to be demonstrated in a realistically maintained cir-
culation (though see Morales-Juberías et  al. (2015) for 
a promising approach). The equatorial jets in all four 
giant planets pose other significant challenges to such 
models, for which the question remains unresolved as 
to whether these jets require a deep circulation (e.g. 
Yano et al. 2005; Kaspi et al. 2009; Heimpel et al. 2005) 
or can be sustained solely within a shallow weather 
layer (e.g. Yamazaki et  al. 2005; Liu and Schneider 
2011).

More generally the connection between shallow 
weather layers and deep-seated circulations and convec-
tion remains poorly understood. Deep models are cur-
rently unable to capture the complex structures of the 
weather layer while shallow weather layer models do 
not represent a physically realistic lower boundary. The 
development of coupled deep convection and weather 
layer models, similar to the coupled atmosphere–ocean 
models for the Earth’s climate, may ultimately be the only 
way to address this adequately, although this approach 
also presents major technical challenges.
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